graphiti/graphiti_core/llm_client/gemini_client.py

222 lines
8.7 KiB
Python

"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import json
import logging
import typing
from google import genai # type: ignore
from google.genai import types # type: ignore
from pydantic import BaseModel
from ..prompts.models import Message
from .client import LLMClient
from .config import DEFAULT_MAX_TOKENS, LLMConfig, ModelSize
from .errors import RateLimitError
logger = logging.getLogger(__name__)
DEFAULT_MODEL = 'gemini-2.0-flash'
DEFAULT_THINKING_BUDGET = 0
# Gemini models that support thinking capabilities
GEMINI_THINKING_MODELS = [
'gemini-2.5-pro',
'gemini-2.5-flash',
'gemini-2.5-flash-lite',
]
class GeminiClient(LLMClient):
"""
GeminiClient is a client class for interacting with Google's Gemini language models.
This class extends the LLMClient and provides methods to initialize the client
and generate responses from the Gemini language model.
Attributes:
model (str): The model name to use for generating responses.
temperature (float): The temperature to use for generating responses.
max_tokens (int): The maximum number of tokens to generate in a response.
thinking_config (types.ThinkingConfig | None): Optional thinking configuration for models that support it.
Methods:
__init__(config: LLMConfig | None = None, cache: bool = False, thinking_config: types.ThinkingConfig | None = None):
Initializes the GeminiClient with the provided configuration, cache setting, and optional thinking config.
_generate_response(messages: list[Message]) -> dict[str, typing.Any]:
Generates a response from the language model based on the provided messages.
"""
def __init__(
self,
config: LLMConfig | None = None,
cache: bool = False,
max_tokens: int = DEFAULT_MAX_TOKENS,
thinking_config: types.ThinkingConfig | None = None,
):
"""
Initialize the GeminiClient with the provided configuration, cache setting, and optional thinking config.
Args:
config (LLMConfig | None): The configuration for the LLM client, including API key, model, temperature, and max tokens.
cache (bool): Whether to use caching for responses. Defaults to False.
thinking_config (types.ThinkingConfig | None): Optional thinking configuration for models that support it.
Only use with models that support thinking (gemini-2.5+). Defaults to None.
"""
if config is None:
config = LLMConfig()
super().__init__(config, cache)
self.model = config.model
# Configure the Gemini API
self.client = genai.Client(
api_key=config.api_key,
)
self.max_tokens = max_tokens
self.thinking_config = thinking_config
async def _generate_response(
self,
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int = DEFAULT_MAX_TOKENS,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
"""
Generate a response from the Gemini language model.
Args:
messages (list[Message]): A list of messages to send to the language model.
response_model (type[BaseModel] | None): An optional Pydantic model to parse the response into.
max_tokens (int): The maximum number of tokens to generate in the response.
Returns:
dict[str, typing.Any]: The response from the language model.
Raises:
RateLimitError: If the API rate limit is exceeded.
RefusalError: If the content is blocked by the model.
Exception: If there is an error generating the response.
"""
try:
gemini_messages: list[types.Content] = []
# If a response model is provided, add schema for structured output
system_prompt = ''
if response_model is not None:
# Get the schema from the Pydantic model
pydantic_schema = response_model.model_json_schema()
# Create instruction to output in the desired JSON format
system_prompt += (
f'Output ONLY valid JSON matching this schema: {json.dumps(pydantic_schema)}.\n'
'Do not include any explanatory text before or after the JSON.\n\n'
)
# Add messages content
# First check for a system message
if messages and messages[0].role == 'system':
system_prompt = f'{messages[0].content}\n\n {system_prompt}'
messages = messages[1:]
# Add the rest of the messages
for m in messages:
m.content = self._clean_input(m.content)
gemini_messages.append(
types.Content(role=m.role, parts=[types.Part.from_text(text=m.content)])
)
# Determine the model to be used
model_to_use = self.model or DEFAULT_MODEL
# Conditionally create thinking_config for models that support thinking
thinking_config_arg = None
if model_to_use in GEMINI_THINKING_MODELS:
thinking_config_arg = types.ThinkingConfig(
include_thoughts=False,
thinking_budget=self.thinking_budget,
)
# Create generation config
generation_config = types.GenerateContentConfig(
temperature=self.temperature,
max_output_tokens=max_tokens or self.max_tokens,
response_mime_type='application/json' if response_model else None,
response_schema=response_model if response_model else None,
system_instruction=system_prompt,
thinking_config=self.thinking_config,
)
# Generate content using the simple string approach
response = await self.client.aio.models.generate_content(
model=model_to_use,
contents=gemini_messages,
config=generation_config,
)
# If this was a structured output request, parse the response into the Pydantic model
if response_model is not None:
try:
if not response.text:
raise ValueError('No response text')
validated_model = response_model.model_validate(json.loads(response.text))
# Return as a dictionary for API consistency
return validated_model.model_dump()
except Exception as e:
raise Exception(f'Failed to parse structured response: {e}') from e
# Otherwise, return the response text as a dictionary
return {'content': response.text}
except Exception as e:
# Check if it's a rate limit error
if 'rate limit' in str(e).lower() or 'quota' in str(e).lower():
raise RateLimitError from e
logger.error(f'Error in generating LLM response: {e}')
raise
async def generate_response(
self,
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int | None = None,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
"""
Generate a response from the Gemini language model.
This method overrides the parent class method to provide a direct implementation.
Args:
messages (list[Message]): A list of messages to send to the language model.
response_model (type[BaseModel] | None): An optional Pydantic model to parse the response into.
max_tokens (int): The maximum number of tokens to generate in the response.
Returns:
dict[str, typing.Any]: The response from the language model.
"""
if max_tokens is None:
max_tokens = self.max_tokens
# Call the internal _generate_response method
return await self._generate_response(
messages=messages,
response_model=response_model,
max_tokens=max_tokens,
model_size=model_size,
)