graphiti/graphiti_core/llm_client/anthropic_client.py
Daniel Chalef 196eb2f077
Remove JSON indentation from prompts to reduce token usage (#985)
Changes to `to_prompt_json()` helper to default to minified JSON (no indentation) instead of 2-space indentation. This reduces token consumption in LLM prompts while maintaining all necessary information.

- Changed default `indent` parameter from `2` to `None` in `prompt_helpers.py`
- Updated all prompt modules to remove explicit `indent=2` arguments
- Minor code formatting fixes in LLM clients

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-06 16:08:43 -07:00

358 lines
14 KiB
Python

"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import json
import logging
import os
import typing
from json import JSONDecodeError
from typing import TYPE_CHECKING, Literal
from pydantic import BaseModel, ValidationError
from ..prompts.models import Message
from .client import LLMClient
from .config import DEFAULT_MAX_TOKENS, LLMConfig, ModelSize
from .errors import RateLimitError, RefusalError
if TYPE_CHECKING:
import anthropic
from anthropic import AsyncAnthropic
from anthropic.types import MessageParam, ToolChoiceParam, ToolUnionParam
else:
try:
import anthropic
from anthropic import AsyncAnthropic
from anthropic.types import MessageParam, ToolChoiceParam, ToolUnionParam
except ImportError:
raise ImportError(
'anthropic is required for AnthropicClient. '
'Install it with: pip install graphiti-core[anthropic]'
) from None
logger = logging.getLogger(__name__)
AnthropicModel = Literal[
'claude-3-7-sonnet-latest',
'claude-3-7-sonnet-20250219',
'claude-3-5-haiku-latest',
'claude-3-5-haiku-20241022',
'claude-3-5-sonnet-latest',
'claude-3-5-sonnet-20241022',
'claude-3-5-sonnet-20240620',
'claude-3-opus-latest',
'claude-3-opus-20240229',
'claude-3-sonnet-20240229',
'claude-3-haiku-20240307',
'claude-2.1',
'claude-2.0',
]
DEFAULT_MODEL: AnthropicModel = 'claude-3-7-sonnet-latest'
class AnthropicClient(LLMClient):
"""
A client for the Anthropic LLM.
Args:
config: A configuration object for the LLM.
cache: Whether to cache the LLM responses.
client: An optional client instance to use.
max_tokens: The maximum number of tokens to generate.
Methods:
generate_response: Generate a response from the LLM.
Notes:
- If a LLMConfig is not provided, api_key will be pulled from the ANTHROPIC_API_KEY environment
variable, and all default values will be used for the LLMConfig.
"""
model: AnthropicModel
def __init__(
self,
config: LLMConfig | None = None,
cache: bool = False,
client: AsyncAnthropic | None = None,
max_tokens: int = DEFAULT_MAX_TOKENS,
) -> None:
if config is None:
config = LLMConfig()
config.api_key = os.getenv('ANTHROPIC_API_KEY')
config.max_tokens = max_tokens
if config.model is None:
config.model = DEFAULT_MODEL
super().__init__(config, cache)
# Explicitly set the instance model to the config model to prevent type checking errors
self.model = typing.cast(AnthropicModel, config.model)
if not client:
self.client = AsyncAnthropic(
api_key=config.api_key,
max_retries=1,
)
else:
self.client = client
def _extract_json_from_text(self, text: str) -> dict[str, typing.Any]:
"""Extract JSON from text content.
A helper method to extract JSON from text content, used when tool use fails or
no response_model is provided.
Args:
text: The text to extract JSON from
Returns:
Extracted JSON as a dictionary
Raises:
ValueError: If JSON cannot be extracted or parsed
"""
try:
json_start = text.find('{')
json_end = text.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
json_str = text[json_start:json_end]
return json.loads(json_str)
else:
raise ValueError(f'Could not extract JSON from model response: {text}')
except (JSONDecodeError, ValueError) as e:
raise ValueError(f'Could not extract JSON from model response: {text}') from e
def _create_tool(
self, response_model: type[BaseModel] | None = None
) -> tuple[list[ToolUnionParam], ToolChoiceParam]:
"""
Create a tool definition based on the response_model if provided, or a generic JSON tool if not.
Args:
response_model: Optional Pydantic model to use for structured output.
Returns:
A list containing a single tool definition for use with the Anthropic API.
"""
if response_model is not None:
# Use the response_model to define the tool
model_schema = response_model.model_json_schema()
tool_name = response_model.__name__
description = model_schema.get('description', f'Extract {tool_name} information')
else:
# Create a generic JSON output tool
tool_name = 'generic_json_output'
description = 'Output data in JSON format'
model_schema = {
'type': 'object',
'additionalProperties': True,
'description': 'Any JSON object containing the requested information',
}
tool = {
'name': tool_name,
'description': description,
'input_schema': model_schema,
}
tool_list = [tool]
tool_list_cast = typing.cast(list[ToolUnionParam], tool_list)
tool_choice = {'type': 'tool', 'name': tool_name}
tool_choice_cast = typing.cast(ToolChoiceParam, tool_choice)
return tool_list_cast, tool_choice_cast
async def _generate_response(
self,
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int | None = None,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
"""
Generate a response from the Anthropic LLM using tool-based approach for all requests.
Args:
messages: List of message objects to send to the LLM.
response_model: Optional Pydantic model to use for structured output.
max_tokens: Maximum number of tokens to generate.
Returns:
Dictionary containing the structured response from the LLM.
Raises:
RateLimitError: If the rate limit is exceeded.
RefusalError: If the LLM refuses to respond.
Exception: If an error occurs during the generation process.
"""
system_message = messages[0]
user_messages = [{'role': m.role, 'content': m.content} for m in messages[1:]]
user_messages_cast = typing.cast(list[MessageParam], user_messages)
# TODO: Replace hacky min finding solution after fixing hardcoded EXTRACT_EDGES_MAX_TOKENS = 16384 in
# edge_operations.py. Throws errors with cheaper models that lower max_tokens.
max_creation_tokens: int = min(
max_tokens if max_tokens is not None else self.config.max_tokens,
DEFAULT_MAX_TOKENS,
)
try:
# Create the appropriate tool based on whether response_model is provided
tools, tool_choice = self._create_tool(response_model)
result = await self.client.messages.create(
system=system_message.content,
max_tokens=max_creation_tokens,
temperature=self.temperature,
messages=user_messages_cast,
model=self.model,
tools=tools,
tool_choice=tool_choice,
)
# Extract the tool output from the response
for content_item in result.content:
if content_item.type == 'tool_use':
if isinstance(content_item.input, dict):
tool_args: dict[str, typing.Any] = content_item.input
else:
tool_args = json.loads(str(content_item.input))
return tool_args
# If we didn't get a proper tool_use response, try to extract from text
for content_item in result.content:
if content_item.type == 'text':
return self._extract_json_from_text(content_item.text)
else:
raise ValueError(
f'Could not extract structured data from model response: {result.content}'
)
# If we get here, we couldn't parse a structured response
raise ValueError(
f'Could not extract structured data from model response: {result.content}'
)
except anthropic.RateLimitError as e:
raise RateLimitError(f'Rate limit exceeded. Please try again later. Error: {e}') from e
except anthropic.APIError as e:
# Special case for content policy violations. We convert these to RefusalError
# to bypass the retry mechanism, as retrying policy-violating content will always fail.
# This avoids wasting API calls and provides more specific error messaging to the user.
if 'refused to respond' in str(e).lower():
raise RefusalError(str(e)) from e
raise e
except Exception as e:
raise e
async def generate_response(
self,
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int | None = None,
model_size: ModelSize = ModelSize.medium,
group_id: str | None = None,
prompt_name: str | None = None,
) -> dict[str, typing.Any]:
"""
Generate a response from the LLM.
Args:
messages: List of message objects to send to the LLM.
response_model: Optional Pydantic model to use for structured output.
max_tokens: Maximum number of tokens to generate.
Returns:
Dictionary containing the structured response from the LLM.
Raises:
RateLimitError: If the rate limit is exceeded.
RefusalError: If the LLM refuses to respond.
Exception: If an error occurs during the generation process.
"""
if max_tokens is None:
max_tokens = self.max_tokens
# Wrap entire operation in tracing span
with self.tracer.start_span('llm.generate') as span:
attributes = {
'llm.provider': 'anthropic',
'model.size': model_size.value,
'max_tokens': max_tokens,
}
if prompt_name:
attributes['prompt.name'] = prompt_name
span.add_attributes(attributes)
retry_count = 0
max_retries = 2
last_error: Exception | None = None
while retry_count <= max_retries:
try:
response = await self._generate_response(
messages, response_model, max_tokens, model_size
)
# If we have a response_model, attempt to validate the response
if response_model is not None:
# Validate the response against the response_model
model_instance = response_model(**response)
return model_instance.model_dump()
# If no validation needed, return the response
return response
except (RateLimitError, RefusalError):
# These errors should not trigger retries
span.set_status('error', str(last_error))
raise
except Exception as e:
last_error = e
if retry_count >= max_retries:
if isinstance(e, ValidationError):
logger.error(
f'Validation error after {retry_count}/{max_retries} attempts: {e}'
)
else:
logger.error(f'Max retries ({max_retries}) exceeded. Last error: {e}')
span.set_status('error', str(e))
span.record_exception(e)
raise e
if isinstance(e, ValidationError):
response_model_cast = typing.cast(type[BaseModel], response_model)
error_context = f'The previous response was invalid. Please provide a valid {response_model_cast.__name__} object. Error: {e}'
else:
error_context = (
f'The previous response attempt was invalid. '
f'Error type: {e.__class__.__name__}. '
f'Error details: {str(e)}. '
f'Please try again with a valid response.'
)
# Common retry logic
retry_count += 1
messages.append(Message(role='user', content=error_context))
logger.warning(
f'Retrying after error (attempt {retry_count}/{max_retries}): {e}'
)
# If we somehow get here, raise the last error
span.set_status('error', str(last_error))
raise last_error or Exception('Max retries exceeded with no specific error')