""" Copyright 2024, Zep Software, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging from time import time import pydantic from graphiti_core.helpers import MAX_REFLEXION_ITERATIONS, semaphore_gather from graphiti_core.llm_client import LLMClient from graphiti_core.nodes import EntityNode, EntityType, EpisodeType, EpisodicNode from graphiti_core.prompts import prompt_library from graphiti_core.prompts.dedupe_nodes import NodeDuplicate from graphiti_core.prompts.extract_nodes import ( EntityClassification, ExtractedNodes, MissedEntities, ) from graphiti_core.prompts.summarize_nodes import Summary from graphiti_core.utils.datetime_utils import utc_now logger = logging.getLogger(__name__) async def extract_message_nodes( llm_client: LLMClient, episode: EpisodicNode, previous_episodes: list[EpisodicNode], custom_prompt='', ) -> list[str]: # Prepare context for LLM context = { 'episode_content': episode.content, 'episode_timestamp': episode.valid_at.isoformat(), 'previous_episodes': [ep.content for ep in previous_episodes], 'custom_prompt': custom_prompt, } llm_response = await llm_client.generate_response( prompt_library.extract_nodes.extract_message(context), response_model=ExtractedNodes ) extracted_node_names = llm_response.get('extracted_node_names', []) return extracted_node_names async def extract_text_nodes( llm_client: LLMClient, episode: EpisodicNode, previous_episodes: list[EpisodicNode], custom_prompt='', ) -> list[str]: # Prepare context for LLM context = { 'episode_content': episode.content, 'episode_timestamp': episode.valid_at.isoformat(), 'previous_episodes': [ep.content for ep in previous_episodes], 'custom_prompt': custom_prompt, } llm_response = await llm_client.generate_response( prompt_library.extract_nodes.extract_text(context), ExtractedNodes ) extracted_node_names = llm_response.get('extracted_node_names', []) return extracted_node_names async def extract_json_nodes( llm_client: LLMClient, episode: EpisodicNode, custom_prompt='' ) -> list[str]: # Prepare context for LLM context = { 'episode_content': episode.content, 'episode_timestamp': episode.valid_at.isoformat(), 'source_description': episode.source_description, 'custom_prompt': custom_prompt, } llm_response = await llm_client.generate_response( prompt_library.extract_nodes.extract_json(context), ExtractedNodes ) extracted_node_names = llm_response.get('extracted_node_names', []) return extracted_node_names async def extract_nodes_reflexion( llm_client: LLMClient, episode: EpisodicNode, previous_episodes: list[EpisodicNode], node_names: list[str], ) -> list[str]: # Prepare context for LLM context = { 'episode_content': episode.content, 'previous_episodes': [ep.content for ep in previous_episodes], 'extracted_entities': node_names, } llm_response = await llm_client.generate_response( prompt_library.extract_nodes.reflexion(context), MissedEntities ) missed_entities = llm_response.get('missed_entities', []) return missed_entities async def extract_nodes( llm_client: LLMClient, episode: EpisodicNode, previous_episodes: list[EpisodicNode], entity_types: dict[str, EntityType] | None = None, ) -> list[EntityNode]: start = time() extracted_node_names: list[str] = [] custom_prompt = '' entities_missed = True reflexion_iterations = 0 while entities_missed and reflexion_iterations < MAX_REFLEXION_ITERATIONS: if episode.source == EpisodeType.message: extracted_node_names = await extract_message_nodes( llm_client, episode, previous_episodes, custom_prompt ) elif episode.source == EpisodeType.text: extracted_node_names = await extract_text_nodes( llm_client, episode, previous_episodes, custom_prompt ) elif episode.source == EpisodeType.json: extracted_node_names = await extract_json_nodes(llm_client, episode, custom_prompt) reflexion_iterations += 1 if reflexion_iterations < MAX_REFLEXION_ITERATIONS: missing_entities = await extract_nodes_reflexion( llm_client, episode, previous_episodes, extracted_node_names ) entities_missed = len(missing_entities) != 0 custom_prompt = 'The following entities were missed in a previous extraction: ' for entity in missing_entities: custom_prompt += f'\n{entity},' node_classification_context = { 'episode_content': episode.content, 'previous_episodes': [ep.content for ep in previous_episodes], 'extracted_entities': extracted_node_names, 'entity_types': { type_name: values.type_description for type_name, values in entity_types.items() } if entity_types is not None else {}, } node_classifications: dict[str, str | None] = {} if entity_types is not None: try: llm_response = await llm_client.generate_response( prompt_library.extract_nodes.classify_nodes(node_classification_context), response_model=EntityClassification, ) entity_classifications = llm_response.get('entity_classifications', []) node_classifications.update( { entity_classification.get('name'): entity_classification.get('entity_type') for entity_classification in entity_classifications } ) # catch classification errors and continue if we can't classify except Exception as e: logger.exception(e) end = time() logger.debug(f'Extracted new nodes: {extracted_node_names} in {(end - start) * 1000} ms') # Convert the extracted data into EntityNode objects new_nodes = [] for name in extracted_node_names: entity_type = node_classifications.get(name) labels = ( ['Entity'] if entity_type is None or entity_type == 'None' or entity_type == 'null' else ['Entity', entity_type] ) new_node = EntityNode( name=name, group_id=episode.group_id, labels=labels, summary='', created_at=utc_now(), ) new_nodes.append(new_node) logger.debug(f'Created new node: {new_node.name} (UUID: {new_node.uuid})') return new_nodes async def dedupe_extracted_nodes( llm_client: LLMClient, extracted_nodes: list[EntityNode], existing_nodes: list[EntityNode], ) -> tuple[list[EntityNode], dict[str, str]]: start = time() # build existing node map node_map: dict[str, EntityNode] = {} for node in existing_nodes: node_map[node.uuid] = node # Prepare context for LLM existing_nodes_context = [ {'uuid': node.uuid, 'name': node.name, 'summary': node.summary} for node in existing_nodes ] extracted_nodes_context = [ {'uuid': node.uuid, 'name': node.name, 'summary': node.summary} for node in extracted_nodes ] context = { 'existing_nodes': existing_nodes_context, 'extracted_nodes': extracted_nodes_context, } llm_response = await llm_client.generate_response(prompt_library.dedupe_nodes.node(context)) duplicate_data = llm_response.get('duplicates', []) end = time() logger.debug(f'Deduplicated nodes: {duplicate_data} in {(end - start) * 1000} ms') uuid_map: dict[str, str] = {} for duplicate in duplicate_data: uuid_value = duplicate['duplicate_of'] uuid_map[duplicate['uuid']] = uuid_value nodes: list[EntityNode] = [] for node in extracted_nodes: if node.uuid in uuid_map: existing_uuid = uuid_map[node.uuid] existing_node = node_map[existing_uuid] nodes.append(existing_node) else: nodes.append(node) return nodes, uuid_map async def resolve_extracted_nodes( llm_client: LLMClient, extracted_nodes: list[EntityNode], existing_nodes_lists: list[list[EntityNode]], episode: EpisodicNode | None = None, previous_episodes: list[EpisodicNode] | None = None, entity_types: dict[str, EntityType] | None = None, ) -> tuple[list[EntityNode], dict[str, str]]: uuid_map: dict[str, str] = {} resolved_nodes: list[EntityNode] = [] results: list[tuple[EntityNode, dict[str, str]]] = list( await semaphore_gather( *[ resolve_extracted_node( llm_client, extracted_node, existing_nodes, episode, previous_episodes, entity_types, ) for extracted_node, existing_nodes in zip(extracted_nodes, existing_nodes_lists) ] ) ) for result in results: uuid_map.update(result[1]) resolved_nodes.append(result[0]) return resolved_nodes, uuid_map async def resolve_extracted_node( llm_client: LLMClient, extracted_node: EntityNode, existing_nodes: list[EntityNode], episode: EpisodicNode | None = None, previous_episodes: list[EpisodicNode] | None = None, entity_types: dict[str, EntityType] | None = None, ) -> tuple[EntityNode, dict[str, str]]: start = time() # Prepare context for LLM existing_nodes_context = [ {'uuid': node.uuid, 'name': node.name, 'attributes': node.attributes} for node in existing_nodes ] extracted_node_context = { 'uuid': extracted_node.uuid, 'name': extracted_node.name, 'summary': extracted_node.summary, } context = { 'existing_nodes': existing_nodes_context, 'extracted_nodes': extracted_node_context, 'episode_content': episode.content if episode is not None else '', 'previous_episodes': [ep.content for ep in previous_episodes] if previous_episodes is not None else [], } summary_context = { 'node_name': extracted_node.name, 'node_summary': extracted_node.summary, 'episode_content': episode.content if episode is not None else '', 'previous_episodes': [ep.content for ep in previous_episodes] if previous_episodes is not None else [], 'attributes': [], } entity_type_classes: tuple[EntityType, ...] = tuple() if entity_types is not None: # type: ignore entity_type_classes = entity_type_classes + tuple( filter( lambda x: x is not None, # type: ignore [entity_types.get(entity_type) for entity_type in extracted_node.labels], # type: ignore ) ) for entity_type in entity_type_classes: for field_name in entity_type.model_fields: summary_context.get('attributes', []).append(field_name) # type: ignore entity_attributes_model = pydantic.create_model( # type: ignore 'EntityAttributes', __base__=entity_type_classes + (Summary,), # type: ignore ) llm_response, node_attributes_response = await semaphore_gather( llm_client.generate_response( prompt_library.dedupe_nodes.node(context), response_model=NodeDuplicate ), llm_client.generate_response( prompt_library.summarize_nodes.summarize_context(summary_context), response_model=entity_attributes_model, ), ) extracted_node.summary = node_attributes_response.get('summary', '') extracted_node.attributes.update(node_attributes_response) is_duplicate: bool = llm_response.get('is_duplicate', False) uuid: str | None = llm_response.get('uuid', None) name = llm_response.get('name', '') node = extracted_node uuid_map: dict[str, str] = {} if is_duplicate: for existing_node in existing_nodes: if existing_node.uuid != uuid: continue summary_response = await llm_client.generate_response( prompt_library.summarize_nodes.summarize_pair( {'node_summaries': [extracted_node.summary, existing_node.summary]} ), response_model=Summary, ) node = existing_node node.name = name node.summary = summary_response.get('summary', '') new_attributes = existing_node.attributes existing_attributes = existing_node.attributes for attribute_name, attribute_value in existing_attributes.items(): if new_attributes.get(attribute_name) is None: new_attributes[attribute_name] = attribute_value uuid_map[extracted_node.uuid] = existing_node.uuid end = time() logger.debug( f'Resolved node: {extracted_node.name} is {node.name}, in {(end - start) * 1000} ms' ) return node, uuid_map async def dedupe_node_list( llm_client: LLMClient, nodes: list[EntityNode], ) -> tuple[list[EntityNode], dict[str, str]]: start = time() # build node map node_map = {} for node in nodes: node_map[node.uuid] = node # Prepare context for LLM nodes_context = [ {'uuid': node.uuid, 'name': node.name, 'summary': node.summary} for node in nodes ] context = { 'nodes': nodes_context, } llm_response = await llm_client.generate_response( prompt_library.dedupe_nodes.node_list(context) ) nodes_data = llm_response.get('nodes', []) end = time() logger.debug(f'Deduplicated nodes: {nodes_data} in {(end - start) * 1000} ms') # Get full node data unique_nodes = [] uuid_map: dict[str, str] = {} for node_data in nodes_data: node_instance: EntityNode | None = node_map.get(node_data['uuids'][0]) if node_instance is None: logger.warning(f'Node {node_data["uuids"][0]} not found in node map') continue node_instance.summary = node_data['summary'] unique_nodes.append(node_instance) for uuid in node_data['uuids'][1:]: uuid_value = node_map[node_data['uuids'][0]].uuid uuid_map[uuid] = uuid_value return unique_nodes, uuid_map