""" Copyright 2024, Zep Software, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json import logging import typing import anthropic from anthropic import AsyncAnthropic from pydantic import BaseModel from ..prompts.models import Message from .client import LLMClient from .config import LLMConfig from .errors import RateLimitError logger = logging.getLogger(__name__) DEFAULT_MODEL = 'claude-3-5-sonnet-20240620' DEFAULT_MAX_TOKENS = 8192 class AnthropicClient(LLMClient): def __init__(self, config: LLMConfig | None = None, cache: bool = False): if config is None: config = LLMConfig(max_tokens=DEFAULT_MAX_TOKENS) elif config.max_tokens is None: config.max_tokens = DEFAULT_MAX_TOKENS super().__init__(config, cache) self.client = AsyncAnthropic( api_key=config.api_key, # we'll use tenacity to retry max_retries=1, ) async def _generate_response( self, messages: list[Message], response_model: type[BaseModel] | None = None, max_tokens: int = DEFAULT_MAX_TOKENS, ) -> dict[str, typing.Any]: system_message = messages[0] user_messages = [{'role': m.role, 'content': m.content} for m in messages[1:]] + [ {'role': 'assistant', 'content': '{'} ] try: result = await self.client.messages.create( system='Only include JSON in the response. Do not include any additional text or explanation of the content.\n' + system_message.content, max_tokens=max_tokens or self.max_tokens, temperature=self.temperature, messages=user_messages, # type: ignore model=self.model or DEFAULT_MODEL, ) return json.loads('{' + result.content[0].text) # type: ignore except anthropic.RateLimitError as e: raise RateLimitError from e except Exception as e: logger.error(f'Error in generating LLM response: {e}') raise