""" Copyright 2024, Zep Software, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json import logging import typing from typing import TYPE_CHECKING if TYPE_CHECKING: import groq from groq import AsyncGroq from groq.types.chat import ChatCompletionMessageParam else: try: import groq from groq import AsyncGroq from groq.types.chat import ChatCompletionMessageParam except ImportError: raise ImportError( 'groq is required for GroqClient. Install it with: pip install graphiti-core[groq]' ) from None from pydantic import BaseModel from ..prompts.models import Message from .client import LLMClient from .config import LLMConfig, ModelSize from .errors import RateLimitError logger = logging.getLogger(__name__) DEFAULT_MODEL = 'llama-3.1-70b-versatile' DEFAULT_MAX_TOKENS = 2048 class GroqClient(LLMClient): def __init__(self, config: LLMConfig | None = None, cache: bool = False): if config is None: config = LLMConfig(max_tokens=DEFAULT_MAX_TOKENS) elif config.max_tokens is None: config.max_tokens = DEFAULT_MAX_TOKENS super().__init__(config, cache) self.client = AsyncGroq(api_key=config.api_key) async def _generate_response( self, messages: list[Message], response_model: type[BaseModel] | None = None, max_tokens: int = DEFAULT_MAX_TOKENS, model_size: ModelSize = ModelSize.medium, ) -> dict[str, typing.Any]: msgs: list[ChatCompletionMessageParam] = [] for m in messages: if m.role == 'user': msgs.append({'role': 'user', 'content': m.content}) elif m.role == 'system': msgs.append({'role': 'system', 'content': m.content}) try: response = await self.client.chat.completions.create( model=self.model or DEFAULT_MODEL, messages=msgs, temperature=self.temperature, max_tokens=max_tokens or self.max_tokens, response_format={'type': 'json_object'}, ) result = response.choices[0].message.content or '' return json.loads(result) except groq.RateLimitError as e: raise RateLimitError from e except Exception as e: logger.error(f'Error in generating LLM response: {e}') raise