This commit is contained in:
paulpaliychuk 2024-08-29 23:59:21 -04:00
parent b773c281c9
commit f1449ac69a
2 changed files with 372 additions and 422 deletions

View file

@ -77,7 +77,12 @@ def fetch_current_roster():
for t in all_teams:
name = t['full_name']
print(name)
if name == 'Golden State Warriors' or name == 'Boston Celtics' or name == 'Toronto Raptors':
if (
name == 'Golden State Warriors'
or name == 'Boston Celtics'
or name == 'Toronto Raptors'
or name == 'Los Angeles Lakers'
):
roster = commonteamroster.CommonTeamRoster(team_id=t['id']).get_dict()
players_data = roster['resultSets'][0]
headers = players_data['headers']

View file

@ -1,20 +1,27 @@
import asyncio
import json
import logging
import operator
import os
from typing import TypedDict, Dict, List, Optional, Any
import re
from datetime import datetime
from typing import Annotated, Any, Dict, List, TypedDict
from dotenv import load_dotenv
from langchain.agents import AgentExecutor, create_openai_functions_agent
from langchain.prompts import PromptTemplate
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from langchain.prompts import ChatPromptTemplate, PromptTemplate
from langchain.schema import HumanMessage
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.graph import END, StateGraph
from langgraph.prebuilt.tool_executor import ToolExecutor
from datetime import datetime
from langgraph.graph import END, START, StateGraph
from graphiti_core import Graphiti
from graphiti_core.nodes import EpisodeType
logging.getLogger('langchain.callbacks.tracers.langchain').setLevel(logging.WARNING)
logging.getLogger('urllib3.connectionpool').setLevel(logging.ERROR)
DEFAULT_MODEL = 'gpt-4o-mini'
load_dotenv()
logging.basicConfig(
level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
@ -28,6 +35,7 @@ for name in logging.root.manager.loggerDict:
neo4j_uri = os.environ.get('NEO4J_URI', 'bolt://localhost:7687')
neo4j_user = os.environ.get('NEO4J_USER', 'neo4j')
neo4j_password = os.environ.get('NEO4J_PASSWORD', 'password')
graphiti_client = Graphiti(neo4j_uri, neo4j_user, neo4j_password)
openai_api_key = os.getenv('OPENAI_API_KEY')
@ -35,254 +43,143 @@ if not openai_api_key:
logger.error('OPENAI_API_KEY is not set in the environment variables.')
raise ValueError('OPENAI_API_KEY is not set')
MAX_NEGOTIATION_ROUNDS = 5
def format_step_result(messages: List[str], **kwargs) -> Dict[str, Any]:
return {'messages': messages, **kwargs}
# Define the SimulationState
class SimulationState(TypedDict):
messages: List[str] # Changed from HumanMessage to str for simplicity
teams: Dict[str, Dict[str, Any]] # Store team data as a dictionary
messages: Annotated[List[str], operator.add]
teams: Dict[str, Dict[str, int]] # Changed to only store budget
event: str
team_actions: Dict[str, str]
transfer_offers: List[Dict[str, Any]]
current_negotiation: Optional[Dict[str, Any]]
negotiation_rounds: int
negotiation_complete: bool
transfer_offers: Annotated[List[Dict], operator.add]
current_iteration: int
all_events: List[str]
max_iterations: int
class TeamAgent:
def __init__(self, name: str, tools: List[Any]):
self.name = name
self.roster: List[str] = []
self.budget: int = 100_000_000
self.tools = tools
self.last_proposed_transfer: Optional[Dict[str, Any]] = None
@tool
async def fetch_all_teams_context(teams: List[str]):
"""Get the current roster and player summaries for specified teams."""
teams_with_players_dict = {}
llm = ChatOpenAI(temperature=0.2, model=DEFAULT_MODEL).bind(
response_format={'type': 'json_object'}
)
# Create the language model
llm = ChatOpenAI(temperature=0.3)
for team in teams:
team_nodes = await graphiti_client.get_nodes_by_query(team, 1)
if not team_nodes:
logger.warning(f'No nodes found for team: {team}')
continue
# Create the agent executor
template = """You are the manager of the {team_name} NBA team. Make decisions to improve your team.
Current event: {event}
Your task is to decide on an action based on the event. Use the available tools to gather information and make decisions. Do not ask for further input. Instead, take action based on the information you have.
If you decide to propose a transfer, use the propose_transfer tool and include the exact output from the tool in your response, prefixed with "TRANSFER PROPOSAL:".
{agent_scratchpad}"""
prompt = PromptTemplate(
input_variables=['team_name', 'event', 'agent_scratchpad'], template=template
team_node = team_nodes[0]
search_result = await graphiti_client.search(
f'plays for {team_node.name}',
center_node_uuid=team_node.uuid,
num_results=30,
)
agent = create_openai_functions_agent(llm, self.tools, prompt)
self.executor = AgentExecutor(agent=agent, tools=self.tools, verbose=True)
# Include all facts and timestamps (expired at if exists)
roster_facts = [get_fact_string(edge) for edge in search_result]
async def process_event(self, event: str, relevant_offers: List[Dict[str, Any]]) -> str:
logger.debug(f'{self.name}: Processing event: {event}')
logger.debug(f'{self.name}: Current roster: {self.roster}')
logger.debug(f'{self.name}: Current budget: {self.budget}')
prompt = PromptTemplate.from_template("""
Given the following list of facts about players and their teams, extract only the names and provide brief summaries for players who currently play for {team_name}. Follow these guidelines:
1. Only include players who are currently on the team.
2. Discard any information about players who are no longer on the team or were never on the team.
3. Use the 'expired_at' field to determine if a fact is still current. If 'expired_at' is not null, the fact is no longer current.
4. If there are conflicting facts, use the most recent one based on the 'valid_at' or 'created_at' timestamps.
Return the information as a JSON object containing a "players" field, which is an array of objects, each containing 'name' and 'summary' fields
example output:
{{
"players": [
{{
"name": "Player Name",
"summary": "Brief summary of the player"
}},
...
]
}}
Facts:
{facts}
Current players for {team_name}:
""")
llm_response = await llm.ainvoke(
prompt.format(
team_name=team_node.name,
facts='\n'.join(roster_facts),
)
)
try:
result = await self.executor.ainvoke(
{
'team_name': self.name,
'event': event,
'roster': self.roster,
'budget': self.budget,
'relevant_offers': relevant_offers,
}
)
logger.debug(f"{self.name}: Agent output: {result['output']}")
result = json.loads(llm_response.content)
players = result.get('players', [])
if not isinstance(players, list):
raise ValueError('Expected a JSON array')
except json.JSONDecodeError:
logger.error(f'Failed to parse JSON from LLM response for {team_node.name}')
players = []
except ValueError as e:
logger.error(f'Invalid data structure in LLM response for {team_node.name}: {e}')
players = []
# Check if a transfer was proposed
if 'TRANSFER PROPOSAL:' in result['output']:
# Parse the transfer details and set last_proposed_transfer
transfer_details = result['output'].split('TRANSFER PROPOSAL:')[-1].strip()
self.last_proposed_transfer = self.parse_transfer_proposal(transfer_details)
logger.debug(f'{self.name}: Proposed transfer: {self.last_proposed_transfer}')
teams_with_players_dict[team_node.name] = players
return result['output']
except Exception as e:
logger.error(f'{self.name}: Error processing event: {str(e)}')
return f'Error processing event: {str(e)}'
def parse_transfer_proposal(self, proposal: str) -> Dict[str, Any]:
# More flexible parsing
parts = proposal.lower().replace(',', '').split()
to_team = next(parts[i - 1] for i, word in enumerate(parts) if word == 'to')
from_team = next(parts[i - 1] for i, word in enumerate(parts) if word == 'from')
player_name = next(parts[i + 1] for i, word in enumerate(parts) if word == 'buy')
proposed_price = int(''.join(filter(str.isdigit, parts[-1])))
return {
'to_team': to_team,
'from_team': from_team,
'player_name': player_name,
'proposed_price': proposed_price,
}
async def propose_transfer(self, player_name: str, to_team: str, price: int):
self.last_proposed_transfer = {
'from_team': self.name,
'to_team': to_team,
'player_name': player_name,
'proposed_price': price,
}
return f'Proposed transfer of {player_name} to {to_team} for ${price:,}'
async def update_budget(self, amount: int):
"""Update the team's budget."""
self.budget += amount
logger.debug(f"{self.name}'s new budget: ${self.budget:,}")
return f"{self.name}'s new budget: ${self.budget:,}"
async def propose_transfers(self) -> List[Dict[str, Any]]:
"""Propose transfer offers based on the agent's strategy."""
# This is a placeholder implementation. In a real scenario, this would involve more complex logic.
if hasattr(self, 'last_proposed_transfer'):
return [self.last_proposed_transfer]
return []
async def update_roster(self):
"""Update the team's roster using the get_team_roster tool."""
roster_tool = next(tool for tool in self.tools if tool.name == 'get_team_roster')
roster_string = await roster_tool.ainvoke(self.name)
self.roster = roster_string.split(': ')[1].split(', ')
def remove_player(self, player_name: str):
"""Remove a player from the team's roster."""
if player_name in self.roster:
self.roster.remove(player_name)
logger.debug(f"{player_name} removed from {self.name}'s roster")
else:
logger.warning(f"{player_name} not found in {self.name}'s roster")
def add_player(self, player_name: str):
"""Add a player to the team's roster."""
if player_name not in self.roster:
self.roster.append(player_name)
logger.debug(f"{player_name} added to {self.name}'s roster")
else:
logger.warning(f"{player_name} already in {self.name}'s roster")
async def get_transfer_offers(self):
"""Get the list of proposed transfers for this team."""
return self.proposed_transfers
async def submit_transfer_offer(self, player_name: str, to_team: str, proposed_price: int):
"""Submit a transfer offer for a player."""
offer = {
'from_team': self.name,
'to_team': to_team,
'player_name': player_name,
'proposed_price': proposed_price,
}
self.proposed_transfers.append(offer)
logger.debug(f'Transfer offer submitted: {offer}')
return offer
async def react_to_others(self, other_actions: List[str]) -> str:
reaction_prompt = f"""Other teams have taken the following actions:
{' '.join(other_actions)}
How do you want to react to these actions? Consider if you need to adjust your strategy or make counter-moves."""
result = await self.executor.ainvoke(
{
'input': reaction_prompt,
'agent_scratchpad': [],
}
)
return result['output']
async def decide_on_transfer(self, offer: Dict[str, Any]) -> Dict[str, Any]:
logger.debug(f'{self.name}: Deciding on transfer offer: {offer}')
decision = await self.executor.ainvoke(
{
'input': f"Transfer offer received:\nPlayer: {offer['player_name']}\nFrom: {offer['from_team']}\nTo: {self.name}\nPrice: ${offer['proposed_price']:,}\n\nMake a decision to accept, reject, or counter-offer. Respond with a dictionary containing 'action' (accept/reject/counter) and 'counter_offer' (if applicable).",
'agent_scratchpad': [],
}
)
logger.debug(f"{self.name}: Decision on transfer offer: {decision['output']}")
return eval(
decision['output']
) # Convert the string representation of the dictionary to an actual dictionary
async def handle_tool_use(self, response):
if 'Action:' in response and 'Action Input:' in response:
action = response.split('Action:')[1].split('Action Input:')[0].strip()
action_input = response.split('Action Input:')[1].strip()
try:
tool = next(t for t in self.tools if t.name.lower() == action.lower())
if tool.name == 'execute_transfer':
# Parse the action_input for execute_transfer
inputs = eval(action_input)
result = await tool.ainvoke(**inputs)
else:
result = await tool.ainvoke(input=action_input)
return f'Tool execution result: {result}'
except Exception as e:
return f'Error executing tool {action}: {e}'
return None
def to_dict(self) -> Dict[str, Any]:
return {
'name': self.name,
'roster': self.roster,
'budget': self.budget,
'last_proposed_transfer': self.last_proposed_transfer,
}
async def add_episode(event_description: str):
"""Add a new episode to the Graphiti client."""
result = await graphiti_client.add_episode(
name='New Event',
episode_body=event_description,
source_description='User Input',
reference_time=datetime.now(),
source=EpisodeType.message,
)
return f"Episode '{event_description}' added successfully."
async def invoke_tool(tool_name: str, **kwargs):
tool = next(t for t in tools if t.name == tool_name)
return await tool.ainvoke(input=kwargs)
def get_fact_string(edge):
return f'{edge.fact} {edge.valid_at or edge.created_at}'
return teams_with_players_dict
# Existing tools
@tool
async def get_team_roster(team_name: str):
"""Get the current roster for a specific team."""
search_result = await graphiti_client.search(f'plays for {team_name}', num_results=30)
roster = [
edge.fact.split(' plays for ')[0]
for edge in search_result
if 'plays for' in edge.fact.lower()
]
return f"{team_name}'s roster: {', '.join(roster)}"
roster_facts = [get_fact_string(edge) for edge in search_result]
# Use LLM to extract player names
llm = ChatOpenAI(temperature=0, model=DEFAULT_MODEL)
prompt = PromptTemplate.from_template("""
Given the following list of facts about players and their teams, extract only the names of players who play for {team_name}. Return the names as a comma-separated list.
Facts:
{facts}
Players who play for {team_name}:
""")
llm_response = await llm.ainvoke(
prompt.format(team_name=team_name, facts='\n'.join(roster_facts))
)
player_names = [name.strip() for name in llm_response.content.split(',')]
return f"{team_name}'s roster: {', '.join(player_names)}"
@tool
async def search_player_info(player_name: str):
"""Search for information about a specific player."""
search_result = await graphiti_client.search(f'{player_name}', num_results=30)
player_info = {
'name': player_name,
'facts': [get_fact_string(edge) for edge in search_result],
}
return player_info
all_facts = [get_fact_string(edge) for edge in search_result]
# Use LLM to extract relevant player information
llm = ChatOpenAI(temperature=0, model=DEFAULT_MODEL)
prompt = PromptTemplate.from_template("""
Given the following list of facts, extract only the information that is relevant to {player_name}.
Return the relevant facts as a list, with each fact on a new line.
Facts:
{facts}
Relevant facts about {player_name}:
""")
llm_response = await llm.ainvoke(
prompt.format(player_name=player_name, facts='\n'.join(all_facts))
)
relevant_facts = llm_response.content.strip().split('\n')
return {'name': player_name, 'facts': relevant_facts}
@tool
@ -291,23 +188,18 @@ async def propose_transfer(player_name: str, from_team: str, to_team: str, propo
return f'TRANSFER PROPOSAL: {to_team} wants to buy {player_name} from {from_team} for ${proposed_price:,}.'
@tool
async def respond_to_transfer(
player_name: str, from_team: str, to_team: str, response: str, counter_offer: int = None
):
"""Respond to a transfer proposal with an accept, reject, or counter-offer."""
response_message = f'{from_team} {response}s the transfer of {player_name} to {to_team}'
if counter_offer:
response_message += f' with a counter-offer of ${counter_offer:,}'
return f'Transfer response: {response_message}.'
@tool
async def execute_transfer(
player_name: str, from_team: str, to_team: str, price: int
) -> Dict[str, Any]:
"""Execute a transfer between two teams."""
# This is a simplified version. In a real scenario, you'd need to handle this more robustly.
await graphiti_client.add_episode(
name=f'Transfer {player_name}',
episode_body=f'{player_name} transferred from {from_team} to {to_team} for ${price:,}',
source_description='Player Transfer',
reference_time=datetime.now(),
source=EpisodeType.message,
)
return {
'messages': [
HumanMessage(
@ -317,237 +209,290 @@ async def execute_transfer(
}
@tool
async def check_team_budget(team_name: str) -> Dict[str, Any]:
"""Check the current budget of a team."""
# This is a placeholder. In a real scenario, you'd fetch the actual budget.
return {
'messages': [HumanMessage(content=f"Checking {team_name}'s budget...")],
}
@tool
async def submit_transfer_offer(
player_name: str, from_team: str, to_team: str, proposed_price: int
) -> Dict[str, Any]:
"""Submit a transfer offer for a player."""
logger.debug(
f'submit_transfer_offer called with args: player_name={player_name}, from_team={from_team}, to_team={to_team}, proposed_price={proposed_price}'
async def add_episode(event_description: str):
"""Add a new episode to the Graphiti client."""
await graphiti_client.add_episode(
name='New Event',
episode_body=event_description,
source_description='User Input',
reference_time=datetime.now(),
source=EpisodeType.message,
)
offer = {
'from_team': from_team,
'to_team': to_team,
'player_name': player_name,
'proposed_price': proposed_price,
}
logger.debug(f'Transfer offer created: {offer}')
return {
'messages': [
HumanMessage(
content=f'Transfer offer submitted: {from_team} offers to sell {player_name} to {to_team} for ${proposed_price:,}.'
)
],
'transfer_offers': [offer],
}
return f"Episode '{event_description}' added successfully."
def get_fact_string(edge):
fact_string = f'{edge.fact} Valid At: {edge.valid_at or edge.created_at}'
if edge.expired_at:
fact_string += f' Expired At: {edge.expired_at}'
return fact_string
# Update the tools list
tools = [
get_team_roster,
search_player_info,
propose_transfer,
respond_to_transfer,
execute_transfer,
check_team_budget,
submit_transfer_offer,
]
def process_event(state: SimulationState) -> SimulationState:
logger.debug('Entering process_event')
new_message = f"Event processed: {state['event']}"
# Define the team agent function
def create_team_agent(team_name: str, valid_teams: List[str]):
llm = ChatOpenAI(temperature=0.3, model=DEFAULT_MODEL).bind(
response_format={'type': 'json_object'}
)
prompt = ChatPromptTemplate.from_template("""You are the manager of the {team_name} NBA team. Make decisions to improve your team.
Current event: {event}
Your task is to decide on an action based on the event. Use the available tools to gather information, but focus on making a decision quickly. If you think a player transfer would benefit your team, propose one following the guidelines below.
Ensure that you use the current budget info and the current state of your team to make the best decision.
Current budget: ${budget}
Valid teams for transfers: {valid_teams}
IMPORTANT: After gathering information, you MUST make a decision. Your options are:
1. Propose a transfer
Note: if you are proposing a transfer make sure to output JSON in the following format:
{{
"transfer_proposal": {{
"to_team": "team_name",
"from_team": "team_name",
"player_name": "player_name",
"proposed_price": price
}}
}}
IMPORTANT: Only propose transfers to teams in the valid teams list. Make sure that the player_name is a valid player on the from_team. Ensure that the the from_team name is a valid team name.
2. Do nothing (output an empty JSON object)
Do not ask for more information or clarification. Make a decision based on what you know.
{agent_scratchpad}""")
async def team_agent_function(state: SimulationState) -> Dict:
agent = create_openai_functions_agent(llm, tools, prompt)
executor = AgentExecutor(
agent=agent, tools=[get_team_roster, search_player_info], verbose=True
)
team_data = state['teams'][team_name]
result = await executor.ainvoke(
{
'team_name': team_name,
'event': state['event'],
'budget': team_data['budget'],
'valid_teams': ', '.join(valid_teams),
}
)
json_result = json.loads(result['output'])
transfer_offer = None
if 'transfer_proposal' in json_result:
transfer_offer = json_result['transfer_proposal']
if (
transfer_offer['to_team'] not in valid_teams
or transfer_offer['from_team'] not in valid_teams
):
logger.warning(f'Invalid transfer proposal: {transfer_offer}. Ignoring.')
transfer_offer = None
return {
'transfer_offers': [transfer_offer] if transfer_offer else [],
}
return team_agent_function
def parse_transfer_proposal(proposal: str) -> Dict[str, Any]:
# Use regex to extract information
to_team_match = re.search(r'(.*?) wants to buy', proposal)
player_match = re.search(r'buy (.*?) from', proposal)
from_team_match = re.search(r'from (.*?) for', proposal)
price_match = re.search(r'\$([0-9,]+)', proposal)
if not all([to_team_match, player_match, from_team_match, price_match]):
raise ValueError(f'Unable to parse transfer proposal: {proposal}')
to_team = to_team_match.group(1)
player_name = player_match.group(1)
from_team = from_team_match.group(1)
proposed_price = int(price_match.group(1).replace(',', ''))
return {
**state,
'messages': state.get('messages', []) + [new_message],
'to_team': to_team,
'from_team': from_team,
'player_name': player_name,
'proposed_price': proposed_price,
}
async def parallel_agent_processing(state: SimulationState) -> SimulationState:
logger.debug('Entering parallel_agent_processing')
tasks = []
team_agents = {}
for team_name, team_data in state['teams'].items():
team_agent = TeamAgent(team_data['name'], tools)
team_agents[team_name] = team_agent
tasks.append(
asyncio.create_task(team_agent.process_event(state['event'], state['transfer_offers']))
)
results = await asyncio.gather(*tasks, return_exceptions=True)
updated_state = state.copy()
updated_state['transfer_offers'] = []
for i, (team_name, team_data) in enumerate(state['teams'].items()):
if isinstance(results[i], Exception):
logger.error(f'Error processing event for {team_name}: {str(results[i])}')
updated_state['team_actions'][team_name] = f'Error: {str(results[i])}'
else:
logger.debug(f'Team {team_name} action: {results[i]}')
updated_state['team_actions'][team_name] = results[i]
if team_agents[team_name].last_proposed_transfer:
updated_state['transfer_offers'].append(
team_agents[team_name].last_proposed_transfer
)
updated_state['teams'][team_name] = team_agents[team_name].to_dict()
logger.debug(f'Updated state after parallel processing: {updated_state}')
return updated_state
async def process_event(state: SimulationState) -> SimulationState:
# await add_episode(state['event'])
return {
**state,
'messages': [f"Event processed: {state['event']}"],
'transfer_offers': [],
}
async def collect_transfer_offers(state: SimulationState) -> SimulationState:
logger.debug('Entering collect_transfer_offers')
updated_state = state.copy()
logger.debug(f'Collected transfer offers: {updated_state}')
# The transfer offers are already collected in parallel_agent_processing
logger.debug(f"Collected transfer offers: {updated_state['transfer_offers']}")
return updated_state
def select_negotiation(state: SimulationState) -> SimulationState:
logger.debug('Entering select_negotiation')
async def process_transfers(state: SimulationState) -> SimulationState:
if not state['transfer_offers']:
return {**state, 'current_negotiation': None, 'negotiation_complete': True}
return {**state, 'current_negotiation': state['transfer_offers'][0]}
return state
# Group offers by player
offers_by_player = {}
for offer in state['transfer_offers']:
player = offer['player_name']
if player not in offers_by_player:
offers_by_player[player] = []
offers_by_player[player].append(offer)
async def negotiate_transfer(state: SimulationState) -> SimulationState:
logger.debug('Entering negotiate_transfer')
updated_state = state.copy()
for player, offers in offers_by_player.items():
# Sort offers by price, highest first
best_offer = max(offers, key=lambda x: x['proposed_price'])
if not updated_state['transfer_offers']:
logger.debug('No transfer offers to negotiate')
return updated_state
# Sort offers by proposed price (highest first)
sorted_offers = sorted(
updated_state['transfer_offers'], key=lambda x: x['proposed_price'], reverse=True
)
best_offer = sorted_offers[0]
# Simulate negotiation
from_team = updated_state['teams'][best_offer['from_team']]
to_team = updated_state['teams'][best_offer['to_team']]
# Simple negotiation logic: accept if the price is above a threshold
threshold = 50 # This can be adjusted
if best_offer['proposed_price'] > threshold:
logger.info(
f"Transfer accepted: {best_offer['player_name']} from {best_offer['from_team']} to {best_offer['to_team']} for ${best_offer['proposed_price']}"
f"Best offer for {player}: {best_offer['to_team']} wants to buy from {best_offer['from_team']} for ${best_offer['proposed_price']:,}"
)
# Execute the transfer
transfer_result = await execute_transfer.ainvoke(
{
'player_name': best_offer['player_name'],
'from_team': best_offer['from_team'],
'to_team': best_offer['to_team'],
'price': best_offer['proposed_price'],
}
)
# Add the transfer result message to the state
state['messages'].extend(transfer_result['messages'])
# Update team rosters and budgets
from_team['roster'].remove(best_offer['player_name'])
to_team['roster'].append(best_offer['player_name'])
from_team['budget'] += best_offer['proposed_price']
to_team['budget'] -= best_offer['proposed_price']
updated_state['negotiation_complete'] = True
else:
logger.info(
f"Transfer rejected: {best_offer['player_name']} from {best_offer['from_team']} to {best_offer['to_team']} for ${best_offer['proposed_price']}"
)
from_team = best_offer['from_team']
to_team = best_offer['to_team']
price = best_offer['proposed_price']
updated_state['current_negotiation'] = None
updated_state['transfer_offers'] = []
return updated_state
if from_team in state['teams'] and to_team in state['teams']:
state['teams'][from_team]['budget'] += price
state['teams'][to_team]['budget'] -= price
else:
logger.warning(f'Cannot process transfer: {from_team} or {to_team} not in simulation.')
# Clear all processed offers
state['transfer_offers'] = []
return state
async def execute_transfer(state: SimulationState, offer: Dict[str, Any]) -> None:
from_agent = TeamAgent(
state['teams'][offer['from_team']]['name'], tools
) # Recreate TeamAgent from data
to_agent = TeamAgent(
state['teams'][offer['to_team']]['name'], tools
) # Recreate TeamAgent from data
def create_simulator_agent():
llm = ChatOpenAI(
temperature=0.7, model=DEFAULT_MODEL
) # Higher temperature for more creative events
prompt = ChatPromptTemplate.from_template("""
You are an NBA event simulator. Your role is to generate realistic events based on the current state of NBA teams and players. Use the provided team and player information to create engaging and plausible scenarios.
from_agent.roster.remove(offer['player_name'])
to_agent.roster.append(offer['player_name'])
from_agent.budget += offer['proposed_price']
to_agent.budget -= offer['proposed_price']
Current NBA landscape:
{teams_context}
transfer_message = f"{offer['player_name']} transferred from {offer['from_team']} to {offer['to_team']} for ${offer['proposed_price']:,}"
state['messages'].append(transfer_message)
Generate a single, specific event involving one or more teams or players. The event should be impactful enough to potentially influence team decisions. Examples include outstanding performances, injuries, trade rumors, or off-court incidents.
Output the event as a brief, news-like statement.
Event:
""")
return prompt, llm
def should_continue(state: SimulationState) -> List[str]:
if state['negotiation_complete'] and not state['transfer_offers']:
return [END]
return ['select_negotiation']
simulator_prompt, simulator_llm = create_simulator_agent()
# Define the graph
async def simulate_event(state: SimulationState) -> SimulationState:
teams = ['Toronto Raptors', 'Boston Celtics', 'Golden State Warriors']
teams_context = await fetch_all_teams_context.ainvoke({'teams': teams})
result = await simulator_llm.ainvoke(
simulator_prompt.format_prompt(teams_context=json.dumps(teams_context, indent=2))
)
new_event = result.content
existing_events = state['all_events'] or []
existing_events.append(new_event)
return {
**state,
'event': new_event,
'all_events': existing_events,
'transfer_offers': [],
'current_iteration': state['current_iteration'] + 1,
}
# Create the graph
workflow = StateGraph(SimulationState)
# Add nodes
workflow.add_node('simulate_event', simulate_event)
workflow.add_node('process_event', process_event)
workflow.add_node('parallel_agent_processing', parallel_agent_processing)
workflow.add_node('collect_transfer_offers', collect_transfer_offers)
workflow.add_node('select_negotiation', select_negotiation)
workflow.add_node('negotiate_transfer', negotiate_transfer)
valid_teams = ['Toronto Raptors', 'Boston Celtics', 'Golden State Warriors']
for team in valid_teams:
workflow.add_node(f'agent_{team}', create_team_agent(team, valid_teams))
workflow.add_node('process_transfers', process_transfers)
# Add edges
workflow.add_edge('process_event', 'parallel_agent_processing')
workflow.add_edge('parallel_agent_processing', 'collect_transfer_offers')
workflow.add_edge('collect_transfer_offers', 'select_negotiation')
workflow.add_edge('select_negotiation', 'negotiate_transfer')
workflow.add_edge(START, 'simulate_event')
workflow.add_edge('simulate_event', 'process_event')
# Add edges from process_event to all agent nodes
for team in valid_teams:
workflow.add_edge('process_event', f'agent_{team}')
for team in valid_teams:
workflow.add_edge(f'agent_{team}', 'process_transfers')
def routing_function(state: SimulationState) -> str:
if state['current_iteration'] >= state['max_iterations']:
return END
else:
return 'simulate_event'
# Add conditional edge
workflow.add_conditional_edges(
'negotiate_transfer', should_continue, {'select_negotiation': 'select_negotiation', END: END}
'process_transfers',
routing_function,
)
# Set the entrypoint
workflow.set_entry_point('process_event')
# Compile the graph
app = workflow.compile()
print(app.get_graph().draw_mermaid())
async def run_simulation():
while True:
event = input("Enter an event (or 'quit' to exit): ")
if event.lower() == 'quit':
break
num_iterations = int(input('Enter the number of simulation iterations: '))
initial_state = SimulationState(
messages=[],
teams={
'Toronto Raptors': TeamAgent('Toronto Raptors', tools).to_dict(),
'Boston Celtics': TeamAgent('Boston Celtics', tools).to_dict(),
'Golden State Warriors': TeamAgent('Golden State Warriors', tools).to_dict(),
},
event=event,
team_actions={},
transfer_offers=[],
current_negotiation=None,
negotiation_rounds=0,
negotiation_complete=False,
)
initial_state = SimulationState(
messages=[],
teams={
'Toronto Raptors': {'budget': 100000000},
'Boston Celtics': {'budget': 100000000},
'Golden State Warriors': {'budget': 100000000},
},
event='',
transfer_offers=[],
current_iteration=0,
max_iterations=num_iterations,
)
async for state in app.astream(initial_state):
if 'messages' in state:
for message in state['messages']:
print(message)
final_state = await app.ainvoke(initial_state, {'recursion_limit': 200})
if 'transfer_offers' in state:
print(f"Current transfer offers: {state['transfer_offers']}")
if 'current_negotiation' in state:
print(f"Current negotiation: {state['current_negotiation']}")
print('\nFinal team states:')
for team_name, team_data in initial_state['teams'].items():
print(f"{team_name} - Roster: {team_data['roster']}, Budget: ${team_data['budget']:,}")
print('\n' + '=' * 50 + '\n')
print('\nFinal team states:')
for team_name, team_data in final_state['teams'].items():
print(f"{team_name} - Budget: ${team_data['budget']:,}")
print(f'Steps taken: {final_state["current_iteration"]}')
for event in final_state['all_events']:
print('/n')
print(event)
print('\n')
if __name__ == '__main__':