feat(gemini): embedding batch size & lite default (#680)

* feat(gemini): embedding batch size & lite default

The new `gemini-embedding-001` model only allows one embedding input per batch
(instance), but has other impressive statistics:
https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api

The -DEFAULT_SMALL_MODEL must not have the 'models/' prefix.

* Refactor: Improve Gemini Client Error Handling and Reliability

This commit introduces several improvements to the Gemini client to enhance its robustness and reliability.

- Implemented more specific error handling for various Gemini API responses, including rate limits and safety blocks.
- Added a JSON salvaging mechanism to gracefully handle incomplete or malformed JSON responses from the API.
- Introduced detailed logging for failed LLM generations to simplify debugging and troubleshooting.
- Refined the Gemini embedder to better handle empty or invalid embedding responses.
- Updated and corrected tests to align with the improved error handling and reliability features.

* fix: cleanup in _log_failed_generation()

* fix: cleanup in _log_failed_generation()

* Fix ruff B904 error in gemini_client.py

* fix(gemini): correct retry logic and enhance error logging

Updated the retry mechanism in the GeminiClient to ensure it retries the maximum number of times specified. Improved error logging to provide clearer insights when all retries are exhausted, including detailed information about the last error encountered.

* fix(gemini): enhance error handling for safety blocks and update tests

Refined error handling in the GeminiClient to improve detection of safety block conditions. Updated test cases to reflect changes in exception messages and ensure proper retry logic is enforced. Enhanced mock responses in tests to better simulate real-world scenarios, including handling of invalid JSON responses.

* revert default gemini to text-embedding-001

---------

Co-authored-by: Daniel Chalef <131175+danielchalef@users.noreply.github.com>
This commit is contained in:
alan blount 2025-07-13 13:20:22 -04:00 committed by GitHub
parent cb44ae932e
commit e16740be9d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 215 additions and 60 deletions

View file

@ -14,6 +14,7 @@ See the License for the specific language governing permissions and
limitations under the License.
"""
import logging
from collections.abc import Iterable
from typing import TYPE_CHECKING
@ -34,7 +35,11 @@ from pydantic import Field
from .client import EmbedderClient, EmbedderConfig
DEFAULT_EMBEDDING_MODEL = 'embedding-001'
logger = logging.getLogger(__name__)
DEFAULT_EMBEDDING_MODEL = 'text-embedding-001' # gemini-embedding-001 or text-embedding-005
DEFAULT_BATCH_SIZE = 100
class GeminiEmbedderConfig(EmbedderConfig):
@ -51,6 +56,7 @@ class GeminiEmbedder(EmbedderClient):
self,
config: GeminiEmbedderConfig | None = None,
client: 'genai.Client | None' = None,
batch_size: int | None = None,
):
"""
Initialize the GeminiEmbedder with the provided configuration and client.
@ -58,6 +64,7 @@ class GeminiEmbedder(EmbedderClient):
Args:
config (GeminiEmbedderConfig | None): The configuration for the GeminiEmbedder, including API key, model, base URL, temperature, and max tokens.
client (genai.Client | None): An optional async client instance to use. If not provided, a new genai.Client is created.
batch_size (int | None): An optional batch size to use. If not provided, the default batch size will be used.
"""
if config is None:
config = GeminiEmbedderConfig()
@ -69,6 +76,15 @@ class GeminiEmbedder(EmbedderClient):
else:
self.client = client
if batch_size is None and self.config.embedding_model == 'gemini-embedding-001':
# Gemini API has a limit on the number of instances per request
#https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api
self.batch_size = 1
elif batch_size is None:
self.batch_size = DEFAULT_BATCH_SIZE
else:
self.batch_size = batch_size
async def create(
self, input_data: str | list[str] | Iterable[int] | Iterable[Iterable[int]]
) -> list[float]:
@ -95,19 +111,67 @@ class GeminiEmbedder(EmbedderClient):
return result.embeddings[0].values
async def create_batch(self, input_data_list: list[str]) -> list[list[float]]:
# Generate embeddings
"""
Create embeddings for a batch of input data using Google's Gemini embedding model.
This method handles batching to respect the Gemini API's limits on the number
of instances that can be processed in a single request.
Args:
input_data_list: A list of strings to create embeddings for.
Returns:
A list of embedding vectors (each vector is a list of floats).
"""
if not input_data_list:
return []
batch_size = self.batch_size
all_embeddings = []
# Process inputs in batches
for i in range(0, len(input_data_list), batch_size):
batch = input_data_list[i:i + batch_size]
try:
# Generate embeddings for this batch
result = await self.client.aio.models.embed_content(
model=self.config.embedding_model or DEFAULT_EMBEDDING_MODEL,
contents=input_data_list, # type: ignore[arg-type] # mypy fails on broad union type
contents=batch, # type: ignore[arg-type] # mypy fails on broad union type
config=types.EmbedContentConfig(output_dimensionality=self.config.embedding_dim),
)
if not result.embeddings or len(result.embeddings) == 0:
raise Exception('No embeddings returned')
embeddings = []
# Process embeddings from this batch
for embedding in result.embeddings:
if not embedding.values:
raise ValueError('Empty embedding values returned')
embeddings.append(embedding.values)
return embeddings
all_embeddings.append(embedding.values)
except Exception as e:
# If batch processing fails, fall back to individual processing
logger.warning(f"Batch embedding failed for batch {i//batch_size + 1}, falling back to individual processing: {e}")
for item in batch:
try:
# Process each item individually
result = await self.client.aio.models.embed_content(
model=self.config.embedding_model or DEFAULT_EMBEDDING_MODEL,
contents=[item], # type: ignore[arg-type] # mypy fails on broad union type
config=types.EmbedContentConfig(output_dimensionality=self.config.embedding_dim),
)
if not result.embeddings or len(result.embeddings) == 0:
raise ValueError('No embeddings returned from Gemini API')
if not result.embeddings[0].values:
raise ValueError('Empty embedding values returned')
all_embeddings.append(result.embeddings[0].values)
except Exception as individual_error:
logger.error(f"Failed to embed individual item: {individual_error}")
raise individual_error
return all_embeddings

View file

@ -167,3 +167,18 @@ class LLMClient(ABC):
self.cache_dir.set(cache_key, response)
return response
def _get_failed_generation_log(self, messages: list[Message], output: str | None) -> str:
"""
Log the full input messages, the raw output (if any), and the exception for debugging failed generations.
"""
log = ""
log += f"Input messages: {json.dumps([m.model_dump() for m in messages], indent=2)}\n"
if output is not None:
if len(output) > 4000:
log += f"Raw output: {output[:2000]}... (truncated) ...{output[-2000:]}\n"
else:
log += f"Raw output: {output}\n"
else:
log += "No raw output available"
return log

View file

@ -16,6 +16,7 @@ limitations under the License.
import json
import logging
import re
import typing
from typing import TYPE_CHECKING, ClassVar
@ -44,7 +45,7 @@ else:
logger = logging.getLogger(__name__)
DEFAULT_MODEL = 'gemini-2.5-flash'
DEFAULT_SMALL_MODEL = 'models/gemini-2.5-flash-lite-preview-06-17'
DEFAULT_SMALL_MODEL = 'gemini-2.5-flash-lite-preview-06-17'
class GeminiClient(LLMClient):
@ -146,6 +147,39 @@ class GeminiClient(LLMClient):
else:
return self.model or DEFAULT_MODEL
def salvage_json(self, raw_output: str) -> dict[str, typing.Any] | None:
"""
Attempt to salvage a JSON object if the raw output is truncated.
This is accomplished by looking for the last closing bracket for an array or object.
If found, it will try to load the JSON object from the raw output.
If the JSON object is not valid, it will return None.
Args:
raw_output (str): The raw output from the LLM.
Returns:
dict[str, typing.Any]: The salvaged JSON object.
None: If no salvage is possible.
"""
if not raw_output:
return None
# Try to salvage a JSON array
array_match = re.search(r'\]\s*$', raw_output)
if array_match:
try:
return json.loads(raw_output[:array_match.end()])
except Exception:
pass
# Try to salvage a JSON object
obj_match = re.search(r'\}\s*$', raw_output)
if obj_match:
try:
return json.loads(raw_output[:obj_match.end()])
except Exception:
pass
return None
async def _generate_response(
self,
messages: list[Message],
@ -216,6 +250,9 @@ class GeminiClient(LLMClient):
config=generation_config,
)
# Always capture the raw output for debugging
raw_output = getattr(response, 'text', None)
# Check for safety and prompt blocks
self._check_safety_blocks(response)
self._check_prompt_blocks(response)
@ -223,18 +260,26 @@ class GeminiClient(LLMClient):
# If this was a structured output request, parse the response into the Pydantic model
if response_model is not None:
try:
if not response.text:
if not raw_output:
raise ValueError('No response text')
validated_model = response_model.model_validate(json.loads(response.text))
validated_model = response_model.model_validate(json.loads(raw_output))
# Return as a dictionary for API consistency
return validated_model.model_dump()
except Exception as e:
if raw_output:
logger.error("🦀 LLM generation failed parsing as JSON, will try to salvage.")
logger.error(self._get_failed_generation_log(gemini_messages, raw_output))
# Try to salvage
salvaged = self.salvage_json(raw_output)
if salvaged is not None:
logger.warning("Salvaged partial JSON from truncated/malformed output.")
return salvaged
raise Exception(f'Failed to parse structured response: {e}') from e
# Otherwise, return the response text as a dictionary
return {'content': response.text}
return {'content': raw_output}
except Exception as e:
# Check if it's a rate limit error based on Gemini API error codes
@ -248,7 +293,7 @@ class GeminiClient(LLMClient):
raise RateLimitError from e
logger.error(f'Error in generating LLM response: {e}')
raise
raise Exception from e
async def generate_response(
self,
@ -275,11 +320,12 @@ class GeminiClient(LLMClient):
retry_count = 0
last_error = None
last_output = None
# Add multilingual extraction instructions
messages[0].content += MULTILINGUAL_EXTRACTION_RESPONSES
while retry_count <= self.MAX_RETRIES:
while retry_count < self.MAX_RETRIES:
try:
response = await self._generate_response(
messages=messages,
@ -287,22 +333,19 @@ class GeminiClient(LLMClient):
max_tokens=max_tokens,
model_size=model_size,
)
last_output = response.get('content') if isinstance(response, dict) and 'content' in response else None
return response
except RateLimitError:
except RateLimitError as e:
# Rate limit errors should not trigger retries (fail fast)
raise
raise e
except Exception as e:
last_error = e
# Check if this is a safety block - these typically shouldn't be retried
if 'safety' in str(e).lower() or 'blocked' in str(e).lower():
error_text = str(e) or (str(e.__cause__) if e.__cause__ else '')
if 'safety' in error_text.lower() or 'blocked' in error_text.lower():
logger.warning(f'Content blocked by safety filters: {e}')
raise
# Don't retry if we've hit the max retries
if retry_count >= self.MAX_RETRIES:
logger.error(f'Max retries ({self.MAX_RETRIES}) exceeded. Last error: {e}')
raise
raise Exception(f'Content blocked by safety filters: {e}') from e
retry_count += 1
@ -321,5 +364,8 @@ class GeminiClient(LLMClient):
f'Retrying after application error (attempt {retry_count}/{self.MAX_RETRIES}): {e}'
)
# If we somehow get here, raise the last error
raise last_error or Exception('Max retries exceeded with no specific error')
# If we exit the loop without returning, all retries are exhausted
logger.error("🦀 LLM generation failed and retries are exhausted.")
logger.error(self._get_failed_generation_log(messages, last_output))
logger.error(f'Max retries ({self.MAX_RETRIES}) exceeded. Last error: {last_error}')
raise last_error or Exception("Max retries exceeded")

View file

@ -21,13 +21,13 @@ from typing import Any
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from embedder_fixtures import create_embedding_values
from graphiti_core.embedder.gemini import (
DEFAULT_EMBEDDING_MODEL,
GeminiEmbedder,
GeminiEmbedderConfig,
)
from tests.embedder.embedder_fixtures import create_embedding_values
def create_gemini_embedding(multiplier: float = 0.1, dimension: int = 1536) -> MagicMock:
@ -299,10 +299,9 @@ class TestGeminiEmbedderCreateBatch:
input_batch = []
with pytest.raises(Exception) as exc_info:
await gemini_embedder.create_batch(input_batch)
assert 'No embeddings returned' in str(exc_info.value)
result = await gemini_embedder.create_batch(input_batch)
assert result == []
mock_gemini_client.aio.models.embed_content.assert_not_called()
@pytest.mark.asyncio
async def test_create_batch_no_embeddings_error(
@ -316,10 +315,10 @@ class TestGeminiEmbedderCreateBatch:
input_batch = ['Input 1', 'Input 2']
with pytest.raises(Exception) as exc_info:
with pytest.raises(ValueError) as exc_info:
await gemini_embedder.create_batch(input_batch)
assert 'No embeddings returned' in str(exc_info.value)
assert 'No embeddings returned from Gemini API' in str(exc_info.value)
@pytest.mark.asyncio
async def test_create_batch_empty_values_error(
@ -332,9 +331,24 @@ class TestGeminiEmbedderCreateBatch:
mock_embedding2 = MagicMock()
mock_embedding2.values = None # Empty values
mock_response = MagicMock()
mock_response.embeddings = [mock_embedding1, mock_embedding2]
mock_gemini_client.aio.models.embed_content.return_value = mock_response
# Mock response for the initial batch call
mock_batch_response = MagicMock()
mock_batch_response.embeddings = [mock_embedding1, mock_embedding2]
# Mock response for individual processing of 'Input 1'
mock_individual_response_1 = MagicMock()
mock_individual_response_1.embeddings = [mock_embedding1]
# Mock response for individual processing of 'Input 2' (which has empty values)
mock_individual_response_2 = MagicMock()
mock_individual_response_2.embeddings = [mock_embedding2]
# Set side_effect for embed_content to control return values for each call
mock_gemini_client.aio.models.embed_content.side_effect = [
mock_batch_response, # First call for the batch
mock_individual_response_1, # Second call for individual item 1
mock_individual_response_2 # Third call for individual item 2
]
input_batch = ['Input 1', 'Input 2']

View file

@ -233,11 +233,12 @@ class TestGeminiClientGenerateResponse:
mock_response = MagicMock()
mock_response.candidates = [mock_candidate]
mock_response.prompt_feedback = None
mock_response.text = ''
mock_gemini_client.aio.models.generate_content.return_value = mock_response
# Call method and check exception
messages = [Message(role='user', content='Test message')]
with pytest.raises(Exception, match='Response blocked by Gemini safety filters'):
with pytest.raises(Exception, match='Content blocked by safety filters'):
await gemini_client.generate_response(messages)
@pytest.mark.asyncio
@ -250,35 +251,47 @@ class TestGeminiClientGenerateResponse:
mock_response = MagicMock()
mock_response.candidates = []
mock_response.prompt_feedback = mock_prompt_feedback
mock_response.text = ''
mock_gemini_client.aio.models.generate_content.return_value = mock_response
# Call method and check exception
messages = [Message(role='user', content='Test message')]
with pytest.raises(Exception, match='Prompt blocked by Gemini'):
with pytest.raises(Exception, match='Content blocked by safety filters'):
await gemini_client.generate_response(messages)
@pytest.mark.asyncio
async def test_structured_output_parsing_error(self, gemini_client, mock_gemini_client):
"""Test handling of structured output parsing errors."""
# Setup mock response with invalid JSON
# Setup mock response with invalid JSON that will exhaust retries
mock_response = MagicMock()
mock_response.text = 'Invalid JSON response'
mock_response.text = 'Invalid JSON that cannot be parsed'
mock_response.candidates = []
mock_response.prompt_feedback = None
mock_gemini_client.aio.models.generate_content.return_value = mock_response
# Call method and check exception
# Call method and check exception - should exhaust retries
messages = [Message(role='user', content='Test message')]
with pytest.raises(Exception, match='Failed to parse structured response'):
with pytest.raises(Exception): # noqa: B017
await gemini_client.generate_response(messages, response_model=ResponseModel)
# Should have called generate_content MAX_RETRIES times (2 attempts total)
assert mock_gemini_client.aio.models.generate_content.call_count == GeminiClient.MAX_RETRIES
@pytest.mark.asyncio
async def test_retry_logic_with_safety_block(self, gemini_client, mock_gemini_client):
"""Test that safety blocks are not retried."""
# Setup mock to raise safety error
mock_gemini_client.aio.models.generate_content.side_effect = Exception(
'Content blocked by safety filters'
)
# Setup mock response with safety block
mock_candidate = MagicMock()
mock_candidate.finish_reason = 'SAFETY'
mock_candidate.safety_ratings = [
MagicMock(blocked=True, category='HARM_CATEGORY_HARASSMENT', probability='HIGH')
]
mock_response = MagicMock()
mock_response.candidates = [mock_candidate]
mock_response.prompt_feedback = None
mock_response.text = ''
mock_gemini_client.aio.models.generate_content.return_value = mock_response
# Call method and check that it doesn't retry
messages = [Message(role='user', content='Test message')]
@ -291,9 +304,9 @@ class TestGeminiClientGenerateResponse:
@pytest.mark.asyncio
async def test_retry_logic_with_validation_error(self, gemini_client, mock_gemini_client):
"""Test retry behavior on validation error."""
# First call returns invalid data, second call returns valid data
# First call returns invalid JSON, second call returns valid data
mock_response1 = MagicMock()
mock_response1.text = '{"wrong_field": "wrong_value"}'
mock_response1.text = 'Invalid JSON that cannot be parsed'
mock_response1.candidates = []
mock_response1.prompt_feedback = None
@ -318,22 +331,22 @@ class TestGeminiClientGenerateResponse:
@pytest.mark.asyncio
async def test_max_retries_exceeded(self, gemini_client, mock_gemini_client):
"""Test behavior when max retries are exceeded."""
# Setup mock to always return invalid data
# Setup mock to always return invalid JSON
mock_response = MagicMock()
mock_response.text = '{"wrong_field": "wrong_value"}'
mock_response.text = 'Invalid JSON that cannot be parsed'
mock_response.candidates = []
mock_response.prompt_feedback = None
mock_gemini_client.aio.models.generate_content.return_value = mock_response
# Call method and check exception
messages = [Message(role='user', content='Test message')]
with pytest.raises(Exception, match='Failed to parse structured response'):
with pytest.raises(Exception): # noqa: B017
await gemini_client.generate_response(messages, response_model=ResponseModel)
# Should have called generate_content MAX_RETRIES + 1 times
# Should have called generate_content MAX_RETRIES times (2 attempts total)
assert (
mock_gemini_client.aio.models.generate_content.call_count
== GeminiClient.MAX_RETRIES + 1
== GeminiClient.MAX_RETRIES
)
@pytest.mark.asyncio
@ -348,9 +361,12 @@ class TestGeminiClientGenerateResponse:
# Call method with structured output and check exception
messages = [Message(role='user', content='Test message')]
with pytest.raises(Exception, match='Failed to parse structured response'):
with pytest.raises(Exception): # noqa: B017
await gemini_client.generate_response(messages, response_model=ResponseModel)
# Should have exhausted retries due to empty response (2 attempts total)
assert mock_gemini_client.aio.models.generate_content.call_count == GeminiClient.MAX_RETRIES
@pytest.mark.asyncio
async def test_custom_max_tokens(self, gemini_client, mock_gemini_client):
"""Test response generation with custom max tokens."""