chore: adding support for aws bedrock using boto3, more inclined towards anthropic models provided by aws
This commit is contained in:
parent
56694a6dea
commit
82ff6fc696
2 changed files with 149 additions and 0 deletions
147
graphiti_core/llm_client/aws_bedrock_client.py
Normal file
147
graphiti_core/llm_client/aws_bedrock_client.py
Normal file
|
|
@ -0,0 +1,147 @@
|
|||
"""
|
||||
Copyright 2024, Zep Software, Inc.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import boto3
|
||||
from typing import ClassVar
|
||||
from pydantic import BaseModel
|
||||
|
||||
from .config import DEFAULT_MAX_TOKENS, LLMConfig
|
||||
from .openai_base_client import BaseOpenAIClient
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BedrockAnthropicLLMClient(BaseOpenAIClient):
|
||||
MAX_RETRIES: ClassVar[int] = 2
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: LLMConfig | None = None,
|
||||
max_tokens: int = DEFAULT_MAX_TOKENS,
|
||||
):
|
||||
super().__init__(config, cache=False, max_tokens=max_tokens)
|
||||
|
||||
self.region = config.region if config and getattr(config, "region", None) else "us-east-1"
|
||||
self.model = config.model if config else "anthropic.claude-3-sonnet-20240229-v1:0"
|
||||
|
||||
self.client = boto3.client("bedrock-runtime", region_name=self.region)
|
||||
async def _create_structured_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[dict],
|
||||
temperature: float | None,
|
||||
max_tokens: int,
|
||||
response_model: type[BaseModel],
|
||||
):
|
||||
|
||||
text_response = await self._invoke_bedrock_model(
|
||||
model=model,
|
||||
messages=messages,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
response_format="json",
|
||||
)
|
||||
|
||||
try:
|
||||
parsed = response_model.parse_raw(text_response)
|
||||
return parsed
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to parse structured Bedrock response: {e}")
|
||||
raise
|
||||
|
||||
async def _create_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[dict],
|
||||
temperature: float | None,
|
||||
max_tokens: int,
|
||||
response_model: type[BaseModel] | None = None,
|
||||
):
|
||||
text_response = await self._invoke_bedrock_model(
|
||||
model=model,
|
||||
messages=messages,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
response_format="text",
|
||||
)
|
||||
|
||||
if response_model:
|
||||
try:
|
||||
parsed = response_model.parse_raw(text_response)
|
||||
return parsed
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to parse Bedrock response to {response_model.__name__}: {e}")
|
||||
raise
|
||||
return text_response
|
||||
|
||||
async def _invoke_bedrock_model(
|
||||
self,
|
||||
model: str,
|
||||
messages: list[dict],
|
||||
temperature: float | None = 0.7,
|
||||
max_tokens: int = 200,
|
||||
response_format: str = "text",
|
||||
) -> str:
|
||||
|
||||
# Separate system prompt and user messages
|
||||
system_prompt = None
|
||||
final_messages = []
|
||||
for m in messages:
|
||||
if m["role"] == "system":
|
||||
system_prompt = m["content"]
|
||||
else:
|
||||
final_messages.append(m)
|
||||
|
||||
body_dict = {
|
||||
"messages": final_messages,
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens,
|
||||
"anthropic_version": "bedrock-2023-05-31",
|
||||
}
|
||||
|
||||
if system_prompt:
|
||||
body_dict["system"] = system_prompt
|
||||
|
||||
body = json.dumps(body_dict)
|
||||
|
||||
try:
|
||||
resp = self.client.invoke_model(
|
||||
modelId=model,
|
||||
body=body,
|
||||
accept="application/json",
|
||||
contentType="application/json",
|
||||
)
|
||||
data = json.loads(resp["body"].read().decode("utf-8"))
|
||||
|
||||
if "content" in data and len(data["content"]) > 0:
|
||||
text = data["content"][0].get("text", "")
|
||||
elif "outputText" in data:
|
||||
text = data["outputText"]
|
||||
else:
|
||||
text = json.dumps(data)
|
||||
|
||||
# Ensure JSON-object-only for structured calls
|
||||
if response_format == "json":
|
||||
text = text.strip()
|
||||
if text.startswith("```json"):
|
||||
text = text.replace("```json", "").replace("```", "").strip()
|
||||
return text.strip()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Bedrock model invocation failed: {e}", exc_info=True)
|
||||
raise
|
||||
|
|
@ -42,6 +42,7 @@ class LLMConfig:
|
|||
temperature: float = DEFAULT_TEMPERATURE,
|
||||
max_tokens: int = DEFAULT_MAX_TOKENS,
|
||||
small_model: str | None = None,
|
||||
region: str | None = None,
|
||||
):
|
||||
"""
|
||||
Initialize the LLMConfig with the provided parameters.
|
||||
|
|
@ -66,3 +67,4 @@ class LLMConfig:
|
|||
self.small_model = small_model
|
||||
self.temperature = temperature
|
||||
self.max_tokens = max_tokens
|
||||
self.region = region or "us-east-1"
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue