In memory label propagation community detection (#136)
* WIP * in memory graph detection * format * add comments * update readme * fixed an issue where solo nodes would throw an error when building communities
This commit is contained in:
parent
2fc1b00602
commit
5506a01e24
5 changed files with 106 additions and 43 deletions
|
|
@ -2,7 +2,6 @@
|
|||
|
||||
<img width="350" alt="Graphiti-ts-small" src="https://github.com/user-attachments/assets/bbd02947-e435-4a05-b25a-bbbac36d52c8">
|
||||
|
||||
|
||||
## Temporal Knowledge Graphs for Agentic Applications
|
||||
|
||||
<br />
|
||||
|
|
@ -80,7 +79,6 @@ Requirements:
|
|||
|
||||
- Python 3.10 or higher
|
||||
- Neo4j 5.21 or higher
|
||||
- Neo4j GraphDataScience Plugin (required for community flows)
|
||||
- OpenAI API key (for LLM inference and embedding)
|
||||
|
||||
Optional:
|
||||
|
|
|
|||
|
|
@ -63,7 +63,7 @@ async def main(use_bulk: bool = True):
|
|||
messages = parse_podcast_messages()
|
||||
|
||||
if not use_bulk:
|
||||
for i, message in enumerate(messages[3:14]):
|
||||
for i, message in enumerate(messages[3:4]):
|
||||
await client.add_episode(
|
||||
name=f'Message {i}',
|
||||
episode_body=f'{message.speaker_name} ({message.role}): {message.content}',
|
||||
|
|
@ -76,15 +76,15 @@ async def main(use_bulk: bool = True):
|
|||
await client.build_communities()
|
||||
|
||||
# add additional messages to update communities
|
||||
for i, message in enumerate(messages[14:20]):
|
||||
await client.add_episode(
|
||||
name=f'Message {i}',
|
||||
episode_body=f'{message.speaker_name} ({message.role}): {message.content}',
|
||||
reference_time=message.actual_timestamp,
|
||||
source_description='Podcast Transcript',
|
||||
group_id='1',
|
||||
update_communities=True,
|
||||
)
|
||||
# for i, message in enumerate(messages[14:20]):
|
||||
# await client.add_episode(
|
||||
# name=f'Message {i}',
|
||||
# episode_body=f'{message.speaker_name} ({message.role}): {message.content}',
|
||||
# reference_time=message.actual_timestamp,
|
||||
# source_description='Podcast Transcript',
|
||||
# group_id='1',
|
||||
# update_communities=True,
|
||||
# )
|
||||
|
||||
return
|
||||
|
||||
|
|
|
|||
|
|
@ -579,7 +579,7 @@ class Graphiti:
|
|||
center_node_uuid: str | None = None,
|
||||
group_ids: list[str | None] | None = None,
|
||||
num_results=DEFAULT_SEARCH_LIMIT,
|
||||
):
|
||||
) -> list[EntityEdge]:
|
||||
"""
|
||||
Perform a hybrid search on the knowledge graph.
|
||||
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@ from collections import defaultdict
|
|||
from datetime import datetime
|
||||
|
||||
from neo4j import AsyncDriver
|
||||
from pydantic import BaseModel
|
||||
|
||||
from graphiti_core.edges import CommunityEdge
|
||||
from graphiti_core.llm_client import LLMClient
|
||||
|
|
@ -17,6 +18,11 @@ MAX_COMMUNITY_BUILD_CONCURRENCY = 10
|
|||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Neighbor(BaseModel):
|
||||
node_uuid: str
|
||||
edge_count: int
|
||||
|
||||
|
||||
async def build_community_projection(driver: AsyncDriver) -> str:
|
||||
records, _, _ = await driver.execute_query("""
|
||||
CALL gds.graph.project("communities", "Entity",
|
||||
|
|
@ -32,36 +38,96 @@ async def build_community_projection(driver: AsyncDriver) -> str:
|
|||
return records[0]['graph']
|
||||
|
||||
|
||||
async def destroy_projection(driver: AsyncDriver, projection_name: str):
|
||||
await driver.execute_query(
|
||||
"""
|
||||
CALL gds.graph.drop($projection_name)
|
||||
""",
|
||||
projection_name=projection_name,
|
||||
)
|
||||
async def get_community_clusters(driver: AsyncDriver) -> list[list[EntityNode]]:
|
||||
community_clusters: list[list[EntityNode]] = []
|
||||
|
||||
|
||||
async def get_community_clusters(
|
||||
driver: AsyncDriver, projection_name: str
|
||||
) -> list[list[EntityNode]]:
|
||||
records, _, _ = await driver.execute_query("""
|
||||
CALL gds.leiden.stream("communities")
|
||||
YIELD nodeId, communityId
|
||||
RETURN gds.util.asNode(nodeId).uuid AS entity_uuid, communityId
|
||||
group_id_values, _, _ = await driver.execute_query("""
|
||||
MATCH (n:Entity WHERE n.group_id IS NOT NULL)
|
||||
RETURN
|
||||
collect(DISTINCT n.group_id) AS group_ids
|
||||
""")
|
||||
community_map: dict[int, list[str]] = defaultdict(list)
|
||||
for record in records:
|
||||
community_map[record['communityId']].append(record['entity_uuid'])
|
||||
|
||||
community_clusters: list[list[EntityNode]] = list(
|
||||
await asyncio.gather(
|
||||
*[EntityNode.get_by_uuids(driver, cluster) for cluster in community_map.values()]
|
||||
group_ids = group_id_values[0]['group_ids']
|
||||
for group_id in group_ids:
|
||||
projection: dict[str, list[Neighbor]] = {}
|
||||
nodes = await EntityNode.get_by_group_ids(driver, [group_id])
|
||||
for node in nodes:
|
||||
records, _, _ = await driver.execute_query(
|
||||
"""
|
||||
MATCH (n:Entity {group_id: $group_id, uuid: $uuid})-[r:RELATES_TO]-(m: Entity {group_id: $group_id})
|
||||
WITH count(r) AS count, m.uuid AS uuid
|
||||
RETURN
|
||||
uuid,
|
||||
count
|
||||
""",
|
||||
uuid=node.uuid,
|
||||
group_id=group_id,
|
||||
)
|
||||
|
||||
projection[node.uuid] = [
|
||||
Neighbor(node_uuid=record['uuid'], edge_count=record['count']) for record in records
|
||||
]
|
||||
|
||||
cluster_uuids = label_propagation(projection)
|
||||
|
||||
community_clusters.extend(
|
||||
list(
|
||||
await asyncio.gather(
|
||||
*[EntityNode.get_by_uuids(driver, cluster) for cluster in cluster_uuids]
|
||||
)
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
return community_clusters
|
||||
|
||||
|
||||
def label_propagation(projection: dict[str, list[Neighbor]]) -> list[list[str]]:
|
||||
# Implement the label propagation community detection algorithm.
|
||||
# 1. Start with each node being assigned its own community
|
||||
# 2. Each node will take on the community of the plurality of its neighbors
|
||||
# 3. Ties are broken by going to the largest community
|
||||
# 4. Continue until no communities change during propagation
|
||||
|
||||
community_map = {uuid: i for i, uuid in enumerate(projection.keys())}
|
||||
|
||||
while True:
|
||||
no_change = True
|
||||
new_community_map: dict[str, int] = {}
|
||||
|
||||
for uuid, neighbors in projection.items():
|
||||
curr_community = community_map[uuid]
|
||||
|
||||
community_candidates: dict[int, int] = defaultdict(int)
|
||||
for neighbor in neighbors:
|
||||
community_candidates[community_map[neighbor.node_uuid]] += neighbor.edge_count
|
||||
|
||||
community_lst = [
|
||||
(count, community) for community, count in community_candidates.items()
|
||||
]
|
||||
|
||||
community_lst.sort(reverse=True)
|
||||
community_candidate = community_lst[0][1] if len(community_lst) > 0 else -1
|
||||
|
||||
new_community = max(community_candidate, curr_community)
|
||||
|
||||
new_community_map[uuid] = new_community
|
||||
|
||||
if new_community != curr_community:
|
||||
no_change = False
|
||||
|
||||
if no_change:
|
||||
break
|
||||
|
||||
community_map = new_community_map
|
||||
|
||||
community_cluster_map = defaultdict(list)
|
||||
for uuid, community in community_map.items():
|
||||
community_cluster_map[community].append(uuid)
|
||||
|
||||
clusters = [cluster for cluster in community_cluster_map.values()]
|
||||
return clusters
|
||||
|
||||
|
||||
async def summarize_pair(llm_client: LLMClient, summary_pair: tuple[str, str]) -> str:
|
||||
# Prepare context for LLM
|
||||
context = {'node_summaries': [{'summary': summary} for summary in summary_pair]}
|
||||
|
|
@ -88,7 +154,7 @@ async def generate_summary_description(llm_client: LLMClient, summary: str) -> s
|
|||
|
||||
|
||||
async def build_community(
|
||||
llm_client: LLMClient, community_cluster: list[EntityNode]
|
||||
llm_client: LLMClient, community_cluster: list[EntityNode]
|
||||
) -> tuple[CommunityNode, list[CommunityEdge]]:
|
||||
summaries = [entity.summary for entity in community_cluster]
|
||||
length = len(summaries)
|
||||
|
|
@ -102,7 +168,7 @@ async def build_community(
|
|||
*[
|
||||
summarize_pair(llm_client, (str(left_summary), str(right_summary)))
|
||||
for left_summary, right_summary in zip(
|
||||
summaries[: int(length / 2)], summaries[int(length / 2) :]
|
||||
summaries[: int(length / 2)], summaries[int(length / 2):]
|
||||
)
|
||||
]
|
||||
)
|
||||
|
|
@ -130,10 +196,9 @@ async def build_community(
|
|||
|
||||
|
||||
async def build_communities(
|
||||
driver: AsyncDriver, llm_client: LLMClient
|
||||
driver: AsyncDriver, llm_client: LLMClient
|
||||
) -> tuple[list[CommunityNode], list[CommunityEdge]]:
|
||||
projection = await build_community_projection(driver)
|
||||
community_clusters = await get_community_clusters(driver, projection)
|
||||
community_clusters = await get_community_clusters(driver)
|
||||
|
||||
semaphore = asyncio.Semaphore(MAX_COMMUNITY_BUILD_CONCURRENCY)
|
||||
|
||||
|
|
@ -151,7 +216,6 @@ async def build_communities(
|
|||
community_nodes.append(community[0])
|
||||
community_edges.extend(community[1])
|
||||
|
||||
await destroy_projection(driver, projection)
|
||||
return community_nodes, community_edges
|
||||
|
||||
|
||||
|
|
@ -163,7 +227,7 @@ async def remove_communities(driver: AsyncDriver):
|
|||
|
||||
|
||||
async def determine_entity_community(
|
||||
driver: AsyncDriver, entity: EntityNode
|
||||
driver: AsyncDriver, entity: EntityNode
|
||||
) -> tuple[CommunityNode | None, bool]:
|
||||
# Check if the node is already part of a community
|
||||
records, _, _ = await driver.execute_query(
|
||||
|
|
@ -224,7 +288,7 @@ async def determine_entity_community(
|
|||
|
||||
|
||||
async def update_community(
|
||||
driver: AsyncDriver, llm_client: LLMClient, embedder, entity: EntityNode
|
||||
driver: AsyncDriver, llm_client: LLMClient, embedder, entity: EntityNode
|
||||
):
|
||||
community, is_new = await determine_entity_community(driver, entity)
|
||||
|
||||
|
|
|
|||
|
|
@ -74,6 +74,7 @@ def format_context(facts):
|
|||
async def test_graphiti_init():
|
||||
logger = setup_logging()
|
||||
graphiti = Graphiti(NEO4J_URI, NEO4j_USER, NEO4j_PASSWORD)
|
||||
await graphiti.build_communities()
|
||||
|
||||
edges = await graphiti.search('tania tetlow', group_ids=['1'])
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue