<!-- .github/pull_request_template.md --> ## Description <!-- Provide a clear description of the changes in this PR --> ## DCO Affirmation I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin <!-- This is an auto-generated comment: release notes by coderabbit.ai --> ## Summary by CodeRabbit - **New Features** • Graph visualizations now allow exporting to a user-specified file path for more flexible output management. • The text embedding process has been enhanced with an additional tokenizer option for improved performance. • A new `ExtendableDataPoint` class has been introduced for future extensions. • New JSON files for companies and individuals have been added to facilitate testing and data processing. - **Improvements** • Search functionality now uses updated identifiers for more reliable content retrieval. • Metadata handling has been streamlined across various classes by removing unnecessary type specifications. • Enhanced serialization of properties in the Neo4j adapter for improved handling of complex structures. • The setup process for databases has been improved with a new asynchronous setup function. - **Chores** • Dependency and configuration updates improve overall stability and performance. <!-- end of auto-generated comment: release notes by coderabbit.ai -->
118 lines
3.9 KiB
Python
118 lines
3.9 KiB
Python
import logging
|
|
|
|
from cognee.infrastructure.databases.exceptions.EmbeddingException import EmbeddingException
|
|
from cognee.infrastructure.databases.vector import get_vector_engine
|
|
from cognee.infrastructure.engine import DataPoint
|
|
|
|
logger = logging.getLogger("index_data_points")
|
|
|
|
|
|
async def index_data_points(data_points: list[DataPoint]):
|
|
created_indexes = {}
|
|
index_points = {}
|
|
|
|
vector_engine = get_vector_engine()
|
|
|
|
for data_point in data_points:
|
|
data_point_type = type(data_point)
|
|
|
|
for field_name in data_point.metadata["index_fields"]:
|
|
if getattr(data_point, field_name, None) is None:
|
|
continue
|
|
|
|
index_name = f"{data_point_type.__name__}_{field_name}"
|
|
|
|
if index_name not in created_indexes:
|
|
await vector_engine.create_vector_index(data_point_type.__name__, field_name)
|
|
created_indexes[index_name] = True
|
|
|
|
if index_name not in index_points:
|
|
index_points[index_name] = []
|
|
|
|
indexed_data_point = data_point.model_copy()
|
|
indexed_data_point.metadata["index_fields"] = [field_name]
|
|
index_points[index_name].append(indexed_data_point)
|
|
|
|
for index_name, indexable_points in index_points.items():
|
|
index_name, field_name = index_name.split("_")
|
|
try:
|
|
await vector_engine.index_data_points(index_name, field_name, indexable_points)
|
|
except EmbeddingException as e:
|
|
logger.warning(f"Failed to index data points for {index_name}.{field_name}: {e}")
|
|
|
|
return data_points
|
|
|
|
|
|
async def get_data_points_from_model(
|
|
data_point: DataPoint, added_data_points=None, visited_properties=None
|
|
) -> list[DataPoint]:
|
|
data_points = []
|
|
added_data_points = added_data_points or {}
|
|
visited_properties = visited_properties or {}
|
|
|
|
for field_name, field_value in data_point:
|
|
if isinstance(field_value, DataPoint):
|
|
property_key = f"{str(data_point.id)}{field_name}{str(field_value.id)}"
|
|
|
|
if property_key in visited_properties:
|
|
return []
|
|
|
|
visited_properties[property_key] = True
|
|
|
|
new_data_points = await get_data_points_from_model(
|
|
field_value, added_data_points, visited_properties
|
|
)
|
|
|
|
for new_point in new_data_points:
|
|
if str(new_point.id) not in added_data_points:
|
|
added_data_points[str(new_point.id)] = True
|
|
data_points.append(new_point)
|
|
|
|
if (
|
|
isinstance(field_value, list)
|
|
and len(field_value) > 0
|
|
and isinstance(field_value[0], DataPoint)
|
|
):
|
|
for field_value_item in field_value:
|
|
property_key = f"{str(data_point.id)}{field_name}{str(field_value_item.id)}"
|
|
|
|
if property_key in visited_properties:
|
|
return []
|
|
|
|
visited_properties[property_key] = True
|
|
|
|
new_data_points = await get_data_points_from_model(
|
|
field_value_item, added_data_points, visited_properties
|
|
)
|
|
|
|
for new_point in new_data_points:
|
|
if str(new_point.id) not in added_data_points:
|
|
added_data_points[str(new_point.id)] = True
|
|
data_points.append(new_point)
|
|
|
|
if str(data_point.id) not in added_data_points:
|
|
data_points.append(data_point)
|
|
|
|
return data_points
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
class Car(DataPoint):
|
|
model: str
|
|
color: str
|
|
metadata: dict = {"index_fields": ["name"]}
|
|
|
|
class Person(DataPoint):
|
|
name: str
|
|
age: int
|
|
owns_car: list[Car]
|
|
metadata: dict = {"index_fields": ["name"]}
|
|
|
|
car1 = Car(model="Tesla Model S", color="Blue")
|
|
car2 = Car(model="Toyota Camry", color="Red")
|
|
person = Person(name="John", age=30, owns_car=[car1, car2])
|
|
|
|
data_points = get_data_points_from_model(person)
|
|
|
|
print(data_points)
|