cognee/cognee/tests/tasks/entity_extraction/entity_extraction_test.py

89 lines
2.7 KiB
Python

import os
import pathlib
import asyncio
import cognee
import cognee.modules.ingestion as ingestion
from cognee.infrastructure.llm import get_max_chunk_tokens
from cognee.infrastructure.llm.extraction import extract_content_graph
from cognee.modules.chunking.TextChunker import TextChunker
from cognee.modules.data.processing.document_types import TextDocument
from cognee.modules.users.methods import get_default_user
from cognee.shared.data_models import KnowledgeGraph
from cognee.tasks.documents import extract_chunks_from_documents
from cognee.tasks.ingestion import save_data_item_to_storage
from cognee.infrastructure.files.utils.open_data_file import open_data_file
async def extract_graphs(document_chunks):
"""
Extract graph, and check if entities are present
"""
extraction_results = await asyncio.gather(
*[extract_content_graph(chunk.text, KnowledgeGraph) for chunk in document_chunks]
)
return all(
any(
term in node.name.lower()
for extraction_result in extraction_results
for node in extraction_result.nodes
)
for term in ("qubit", "algorithm", "superposition")
)
async def main():
"""
Test how well the entity extraction works. Repeat graph generation a few times.
If 80% or more graphs are correctly generated, the test passes.
"""
file_path = os.path.join(
pathlib.Path(__file__).parent.parent.parent, "test_data/Quantum_computers.txt"
)
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
await cognee.add("NLP is a subfield of computer science.")
original_file_path = await save_data_item_to_storage(file_path)
async with open_data_file(original_file_path) as file:
classified_data = ingestion.classify(file)
# data_id is the hash of original file contents + owner id to avoid duplicate data
data_id = await ingestion.identify(classified_data, await get_default_user())
await cognee.add(file_path)
text_document = TextDocument(
id=data_id,
type="text",
mime_type="text/plain",
name="quantum_text",
raw_data_location=file_path,
external_metadata=None,
)
document_chunks = []
async for chunk in extract_chunks_from_documents(
[text_document], max_chunk_size=get_max_chunk_tokens(), chunker=TextChunker
):
document_chunks.append(chunk)
number_of_reps = 5
graph_results = await asyncio.gather(
*[extract_graphs(document_chunks) for _ in range(number_of_reps)]
)
correct_graphs = [result for result in graph_results if result]
assert len(correct_graphs) >= 0.8 * number_of_reps
if __name__ == "__main__":
asyncio.run(main())