cognee/cognitive_architecture/utils.py

285 lines
9.5 KiB
Python

import os
import random
import string
import uuid
from graphviz import Digraph
from sqlalchemy import or_
from sqlalchemy.orm import contains_eager
from cognitive_architecture.database.relationaldb.models.metadatas import MetaDatas
from cognitive_architecture.database.relationaldb.models.docs import DocsModel
from cognitive_architecture.database.relationaldb.models.memory import MemoryModel
from cognitive_architecture.database.relationaldb.models.user import User
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.future import select
import logging
class Node:
def __init__(self, id, description, color):
self.id = id
self.description = description
self.color = color
class Edge:
def __init__(self, source, target, label, color):
self.source = source
self.target = target
self.label = label
self.color = color
def get_document_names(doc_input):
"""
Get a list of document names.
This function takes doc_input, which can be a folder path, a single document file path, or a document name as a string.
It returns a list of document names based on the doc_input.
Args:
doc_input (str): The doc_input can be a folder path, a single document file path, or a document name as a string.
Returns:
list: A list of document names.
Example usage:
- Folder path: get_document_names(".data")
- Single document file path: get_document_names(".data/example.pdf")
- Document name provided as a string: get_document_names("example.docx")
"""
if isinstance(doc_input, list):
return doc_input
if os.path.isdir(doc_input):
# doc_input is a folder
folder_path = doc_input
document_names = []
for filename in os.listdir(folder_path):
if os.path.isfile(os.path.join(folder_path, filename)):
document_names.append(filename)
return document_names
elif os.path.isfile(doc_input):
# doc_input is a single document file
return [os.path.basename(doc_input)]
elif isinstance(doc_input, str):
# doc_input is a document name provided as a string
return [doc_input]
else:
# doc_input is not valid
return []
def format_dict(d):
# Initialize an empty list to store formatted items
formatted_items = []
# Iterate through all key-value pairs
for key, value in d.items():
# Format key-value pairs with a colon and space, and adding quotes for string values
formatted_item = (
f"{key}: '{value}'" if isinstance(value, str) else f"{key}: {value}"
)
formatted_items.append(formatted_item)
# Join all formatted items with a comma and a space
formatted_string = ", ".join(formatted_items)
# Add curly braces to mimic a dictionary
formatted_string = f"{{{formatted_string}}}"
return formatted_string
def append_uuid_to_variable_names(variable_mapping):
unique_variable_mapping = {}
for original_name in variable_mapping.values():
unique_name = f"{original_name}_{uuid.uuid4().hex}"
unique_variable_mapping[original_name] = unique_name
return unique_variable_mapping
# Update the functions to use the unique variable names
def create_node_variable_mapping(nodes):
mapping = {}
for node in nodes:
variable_name = f"{node['category']}{node['id']}".lower()
mapping[node["id"]] = variable_name
return mapping
def create_edge_variable_mapping(edges):
mapping = {}
for edge in edges:
# Construct a unique identifier for the edge
variable_name = f"edge{edge['source']}to{edge['target']}".lower()
mapping[(edge["source"], edge["target"])] = variable_name
return mapping
def generate_letter_uuid(length=8):
"""Generate a random string of uppercase letters with the specified length."""
letters = string.ascii_uppercase # A-Z
return "".join(random.choice(letters) for _ in range(length))
from cognitive_architecture.database.relationaldb.models.operation import Operation
from cognitive_architecture.database.relationaldb.database_crud import (
session_scope,
add_entity,
update_entity,
fetch_job_id,
)
async def get_vectordb_namespace(session: AsyncSession, user_id: str):
try:
result = await session.execute(
select(MemoryModel.memory_name)
.where(MemoryModel.user_id == user_id)
.order_by(MemoryModel.created_at.desc())
)
namespace = [row[0] for row in result.fetchall()]
return namespace
except Exception as e:
logging.error(
f"An error occurred while retrieving the Vectordb_namespace: {str(e)}"
)
return None
async def get_vectordb_document_name(session: AsyncSession, user_id: str):
try:
result = await session.execute(
select(DocsModel.doc_name)
.where(DocsModel.user_id == user_id)
.order_by(DocsModel.created_at.desc())
)
doc_names = [row[0] for row in result.fetchall()]
return doc_names
except Exception as e:
logging.error(
f"An error occurred while retrieving the Vectordb_namespace: {str(e)}"
)
return None
async def get_model_id_name(session: AsyncSession, id: str):
try:
result = await session.execute(
select(MemoryModel.memory_name)
.where(MemoryModel.id == id)
.order_by(MemoryModel.created_at.desc())
)
doc_names = [row[0] for row in result.fetchall()]
return doc_names
except Exception as e:
logging.error(
f"An error occurred while retrieving the Vectordb_namespace: {str(e)}"
)
return None
async def get_unsumarized_vector_db_namespace(session: AsyncSession, user_id: str):
"""
Asynchronously retrieves the latest memory names and document details for a given user.
This function executes a database query to fetch memory names and document details
associated with operations performed by a specific user. It leverages explicit joins
with the 'docs' and 'memories' tables and applies eager loading to optimize performance.
Parameters:
- session (AsyncSession): The database session for executing the query.
- user_id (str): The unique identifier of the user.
Returns:
- Tuple[List[str], List[Tuple[str, str]]]: A tuple containing a list of memory names and
a list of tuples with document names and their corresponding IDs.
Returns None if an exception occurs.
Raises:
- Exception: Propagates any exceptions that occur during query execution.
Example Usage:
"""
# try:
result = await session.execute(
select(Operation)
.join(Operation.docs) # Explicit join with docs table
.join(Operation.memories) # Explicit join with memories table
.options(
contains_eager(Operation.docs), # Informs ORM of the join for docs
contains_eager(Operation.memories), # Informs ORM of the join for memories
)
.where(
(Operation.user_id == user_id)
& or_( # Filter by user_id
DocsModel.graph_summary == False, # Condition 1: graph_summary is False
DocsModel.graph_summary == None, # Condition 3: graph_summary is None
) # Filter by user_id
)
.order_by(Operation.created_at.desc()) # Order by creation date
)
operations = result.unique().scalars().all()
# Extract memory names and document names and IDs
# memory_names = [memory.memory_name for op in operations for memory in op.memories]
memory_details = [
(memory.memory_name, memory.memory_category)
for op in operations
for memory in op.memories
]
docs = [(doc.doc_name, doc.id) for op in operations for doc in op.docs]
return memory_details, docs
# except Exception as e:
# # Handle the exception as needed
# print(f"An error occurred: {e}")
# return None
async def get_memory_name_by_doc_id(session: AsyncSession, docs_id: str):
"""
Asynchronously retrieves memory names associated with a specific document ID.
This function executes a database query to fetch memory names linked to a document
through operations. The query is filtered based on a given document ID and retrieves
only the memory names without loading the entire Operation entity.
Parameters:
- session (AsyncSession): The database session for executing the query.
- docs_id (str): The unique identifier of the document.
Returns:
- List[str]: A list of memory names associated with the given document ID.
Returns None if an exception occurs.
Raises:
- Exception: Propagates any exceptions that occur during query execution.
"""
try:
result = await session.execute(
select(MemoryModel.memory_name)
.join(
Operation, Operation.id == MemoryModel.operation_id
) # Join with Operation
.join(
DocsModel, DocsModel.operation_id == Operation.id
) # Join with DocsModel
.where(DocsModel.id == docs_id) # Filtering based on the passed document ID
.distinct() # To avoid duplicate memory names
)
memory_names = [row[0] for row in result.fetchall()]
return memory_names
except Exception as e:
# Handle the exception as needed
print(f"An error occurred: {e}")
return None