cognee/cognee/classifiers/classify_summary.py
2024-03-13 16:08:11 +01:00

56 lines
2 KiB
Python

""" This module contains the function to classify a summary of a document. """
import json
import logging
from langchain.prompts import ChatPromptTemplate
from langchain.chains import create_extraction_chain
from langchain.chat_models import ChatOpenAI
from ..config import Config
config = Config()
config.load()
OPENAI_API_KEY = config.openai_key
async def classify_summary(query, document_summaries):
"""Classify the documents based on the query and content."""
llm = ChatOpenAI(temperature=0, model=config.model)
prompt_classify = ChatPromptTemplate.from_template(
"""You are a classifier. Determine what document
are relevant for the given query: {query},
Document summaries and ids:{document_summaries}"""
)
json_structure = [
{
"name": "classifier",
"description": "Classification",
"parameters": {
"type": "object",
"properties": {
"DocumentSummary": {
"type": "string",
"description": "The summary of the document "
"and the topic it deals with.",
},
"d_id": {"type": "string", "description": "The id of the document"},
},
"required": ["DocumentSummary"],
},
}
]
chain_filter = prompt_classify | llm.bind(
function_call={"name": "classifier"}, functions=json_structure
)
classifier_output = await chain_filter.ainvoke(
{"query": query, "document_summaries": document_summaries}
)
arguments_str = classifier_output.additional_kwargs["function_call"]["arguments"]
logging.info("This is the arguments string %s", arguments_str)
arguments_dict = json.loads(arguments_str)
logging.info("Relevant summary is %s", arguments_dict.get("DocumentSummary", None))
classfier_id = arguments_dict.get("d_id", None)
logging.info("This is the classifier id %s", classfier_id)
return classfier_id