cognee/cognitive_architecture/database/vectordb/basevectordb.py
2023-12-16 15:25:32 +01:00

299 lines
9.5 KiB
Python

import logging
from io import BytesIO
import os, sys
# Add the parent directory to sys.path
# sys.path.append(os.path.dirname(os.path.abspath(__file__)))
import sqlalchemy as sa
print(os.getcwd())
logging.basicConfig(level=logging.INFO)
# import marvin
import requests
from dotenv import load_dotenv
from langchain.document_loaders import PyPDFLoader
from langchain.retrievers import WeaviateHybridSearchRetriever
from weaviate.gql.get import HybridFusion
from cognitive_architecture.database.postgres.models.sessions import Session
from cognitive_architecture.database.postgres.models.metadatas import MetaDatas
from cognitive_architecture.database.postgres.models.operation import Operation
from cognitive_architecture.database.postgres.models.docs import DocsModel
from sqlalchemy.orm import sessionmaker
from cognitive_architecture.database.postgres.database import engine
load_dotenv()
from typing import Optional
import time
import tracemalloc
tracemalloc.start()
from datetime import datetime
from langchain.embeddings.openai import OpenAIEmbeddings
from cognitive_architecture.database.vectordb.vectordb import PineconeVectorDB, WeaviateVectorDB
from langchain.schema import Document
import uuid
import weaviate
from marshmallow import Schema, fields
import json
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
# marvin.settings.openai.api_key = os.environ.get("OPENAI_API_KEY")
class VectorDBFactory:
def __init__(self):
self.db_map = {
"pinecone": PineconeVectorDB,
"weaviate": WeaviateVectorDB,
# Add more database types and their corresponding classes here
}
def create_vector_db(
self,
user_id: str,
index_name: str,
memory_id: str,
db_type: str = "weaviate",
namespace: str = None,
embeddings=None,
):
if db_type in self.db_map:
return self.db_map[db_type](
user_id,
index_name,
memory_id,
namespace,
embeddings
)
raise ValueError(f"Unsupported database type: {db_type}")
class BaseMemory:
def __init__(
self,
user_id: str,
memory_id: Optional[str],
index_name: Optional[str],
db_type: str,
namespace: str,
embeddings: Optional[None],
):
self.user_id = user_id
self.memory_id = memory_id
self.index_name = index_name
self.namespace = namespace
self.embeddings = embeddings
self.db_type = db_type
factory = VectorDBFactory()
self.vector_db = factory.create_vector_db(
self.user_id,
self.index_name,
self.memory_id,
db_type=self.db_type,
namespace=self.namespace,
embeddings=self.embeddings
)
def init_client(self, embeddings, namespace: str):
return self.vector_db.init_client(embeddings, namespace)
# class VectorDBFactory:
# def create_vector_db(
# self,
# user_id: str,
# index_name: str,
# memory_id: str,
# db_type: str = "pinecone",
# namespace: str = None,
# embeddings = None,
# ):
# db_map = {"pinecone": PineconeVectorDB, "weaviate": WeaviateVectorDB}
#
# if db_type in db_map:
# return db_map[db_type](
# user_id,
# index_name,
# memory_id,
# namespace,
# embeddings
# )
#
# raise ValueError(f"Unsupported database type: {db_type}")
#
# class BaseMemory:
# def __init__(
# self,
# user_id: str,
# memory_id: Optional[str],
# index_name: Optional[str],
# db_type: str,
# namespace: str,
# embeddings: Optional[None],
# ):
# self.user_id = user_id
# self.memory_id = memory_id
# self.index_name = index_name
# self.namespace = namespace
# self.embeddings = embeddings
# self.db_type = db_type
# factory = VectorDBFactory()
# self.vector_db = factory.create_vector_db(
# self.user_id,
# self.index_name,
# self.memory_id,
# db_type=self.db_type,
# namespace=self.namespace,
# embeddings=self.embeddings
# )
#
# def init_client(self, embeddings, namespace: str):
#
# return self.vector_db.init_weaviate_client(embeddings, namespace)
def create_field(self, field_type, **kwargs):
field_mapping = {
"Str": fields.Str,
"Int": fields.Int,
"Float": fields.Float,
"Bool": fields.Bool,
}
return field_mapping[field_type](**kwargs)
def create_dynamic_schema(self, params):
"""Create a dynamic schema based on provided parameters."""
dynamic_fields = {field_name: fields.Str() for field_name in params.keys()}
# Create a Schema instance with the dynamic fields
dynamic_schema_instance = Schema.from_dict(dynamic_fields)()
return dynamic_schema_instance
async def get_version_from_db(self, user_id, memory_id):
# Logic to retrieve the version from the database.
Session = sessionmaker(bind=engine)
session = Session()
try:
# Querying both fields: contract_metadata and created_at
result = (
session.query(MetaDatas.contract_metadata, MetaDatas.created_at)
.filter_by(user_id=user_id) # using parameter, not self.user_id
.order_by(MetaDatas.created_at.desc())
.first()
)
if result:
version_in_db, created_at = result
logging.info(f"version_in_db: {version_in_db}")
from ast import literal_eval
version_in_db= literal_eval(version_in_db)
version_in_db = version_in_db.get("version")
return [version_in_db, created_at]
else:
return None
finally:
session.close()
async def update_metadata(self, user_id, memory_id, version_in_params, params):
version_from_db = await self.get_version_from_db(user_id, memory_id)
Session = sessionmaker(bind=engine)
session = Session()
# If there is no metadata, insert it.
if version_from_db is None:
session.add(MetaDatas(id = str(uuid.uuid4()), user_id=self.user_id, version = str(int(time.time())) ,memory_id=self.memory_id, contract_metadata=params))
session.commit()
return params
# If params version is higher, update the metadata.
elif version_in_params > version_from_db[0]:
session.add(MetaDatas(id = str(uuid.uuid4()), user_id=self.user_id, memory_id=self.memory_id, contract_metadata=params))
session.commit()
return params
else:
return params
async def add_memories(
self,
observation: Optional[str] = None,
loader_settings: dict = None,
params: Optional[dict] = None,
namespace: Optional[str] = None,
custom_fields: Optional[str] = None,
embeddings: Optional[str] = None,
):
# from ast import literal_eval
# class DynamicSchema(Schema):
# pass
#
# default_version = 'current_timestamp'
# version_in_params = params.get("version", default_version)
#
# # Check and update metadata version in DB.
# schema_fields = params
#
# def create_field(field_type, **kwargs):
# field_mapping = {
# "Str": fields.Str,
# "Int": fields.Int,
# "Float": fields.Float,
# "Bool": fields.Bool,
# }
# return field_mapping[field_type](**kwargs)
#
# # Dynamic Schema Creation
# params['user_id'] = self.user_id
#
#
# schema_instance = self.create_dynamic_schema(params) # Always creating Str field, adjust as needed
#
# logging.info(f"params : {params}")
#
# # Schema Validation
# schema_instance = schema_instance
# print("Schema fields: ", [field for field in schema_instance._declared_fields])
# loaded_params = schema_instance.load(params)
return await self.vector_db.add_memories(
observation=observation, loader_settings=loader_settings,
params=params, namespace=namespace, metadata_schema_class = None, embeddings=embeddings
)
# Add other db_type conditions if necessary
async def fetch_memories(
self,
observation: str,
search_type: Optional[str] = None,
params: Optional[str] = None,
namespace: Optional[str] = None,
n_of_observations: Optional[int] = 2,
):
logging.info(namespace)
logging.info("The search type is %", search_type)
logging.info(params)
logging.info(observation)
return await self.vector_db.fetch_memories(
observation=observation, search_type= search_type, params=params,
namespace=namespace,
n_of_observations=n_of_observations
)
async def delete_memories(self, namespace:str, params: Optional[str] = None):
return await self.vector_db.delete_memories(namespace,params)
async def count_memories(self, namespace:str, params: Optional[str] = None):
return await self.vector_db.count_memories(namespace,params)