cognee/api.py
2023-12-16 15:25:32 +01:00

179 lines
5.8 KiB
Python

import json
import logging
import os
from enum import Enum
from typing import Dict, Any
import uvicorn
from fastapi import FastAPI, BackgroundTasks, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from cognitive_architecture.database.postgres.database import AsyncSessionLocal
from cognitive_architecture.database.postgres.database_crud import session_scope
from cognitive_architecture.vectorstore_manager import Memory
from dotenv import load_dotenv
from main import add_documents_to_graph_db, user_context_enrichment
from cognitive_architecture.config import Config
# Set up logging
logging.basicConfig(
level=logging.INFO, # Set the logging level (e.g., DEBUG, INFO, WARNING, ERROR, CRITICAL)
format="%(asctime)s [%(levelname)s] %(message)s", # Set the log message format
)
logger = logging.getLogger(__name__)
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
app = FastAPI(debug=True)
#
# from auth.cognito.JWTBearer import JWTBearer
# from auth.auth import jwks
#
# auth = JWTBearer(jwks)
from fastapi import Depends
config = Config()
config.load()
class ImageResponse(BaseModel):
success: bool
message: str
@app.get(
"/",
)
async def root():
"""
Root endpoint that returns a welcome message.
"""
return {"message": "Hello, World, I am alive!"}
@app.get("/health")
def health_check():
"""
Health check endpoint that returns the server status.
"""
return {"status": "OK"}
class Payload(BaseModel):
payload: Dict[str, Any]
@app.post("/add-memory", response_model=dict)
async def add_memory(
payload: Payload,
# files: List[UploadFile] = File(...),
):
try:
logging.info(" Adding to Memory ")
decoded_payload = payload.payload
async with session_scope(session=AsyncSessionLocal()) as session:
from main import load_documents_to_vectorstore
if 'settings' in decoded_payload and decoded_payload['settings'] is not None:
settings_for_loader = decoded_payload['settings']
else:
settings_for_loader = None
if 'content' in decoded_payload and decoded_payload['content'] is not None:
content = decoded_payload['content']
else:
content = None
output = await load_documents_to_vectorstore(session, decoded_payload['user_id'], content=content, loader_settings=settings_for_loader)
return JSONResponse(content={"response": output}, status_code=200)
except Exception as e:
return JSONResponse(
content={"response": {"error": str(e)}}, status_code=503
)
@app.post("/user-query-to-graph")
async def user_query_to_graph(payload: Payload):
try:
from main import user_query_to_graph_db
decoded_payload = payload.payload
# Execute the query - replace this with the actual execution method
async with session_scope(session=AsyncSessionLocal()) as session:
# Assuming you have a method in Neo4jGraphDB to execute the query
result = await user_query_to_graph_db(session= session, user_id= decoded_payload['user_id'],query_input =decoded_payload['query'])
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/document-to-graph-db")
async def document_to_graph_db(payload: Payload):
logging.info("Adding documents to graph db")
try:
decoded_payload = payload.payload
if 'settings' in decoded_payload and decoded_payload['settings'] is not None:
settings_for_loader = decoded_payload['settings']
else:
settings_for_loader = None
async with session_scope(session=AsyncSessionLocal()) as session:
result = await add_documents_to_graph_db(session =session, user_id = decoded_payload['user_id'], loader_settings =settings_for_loader)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/user-query-processor")
async def user_query_processor(payload: Payload):
try:
decoded_payload = payload.payload
# Execute the query - replace this with the actual execution method
async with session_scope(session=AsyncSessionLocal()) as session:
# Assuming you have a method in Neo4jGraphDB to execute the query
result = await user_context_enrichment(session, decoded_payload['user_id'], decoded_payload['query'])
return JSONResponse(content={"response": result}, status_code=200)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/user-query-classifier")
async def user_query_classfier(payload: Payload):
try:
decoded_payload = payload.payload
# Execute the query - replace this with the actual execution method
async with session_scope(session=AsyncSessionLocal()) as session:
from cognitive_architecture.classifiers.classifier import classify_user_query
# Assuming you have a method in Neo4jGraphDB to execute the query
result = await classify_user_query(session, decoded_payload['user_id'], decoded_payload['query'])
return JSONResponse(content={"response": result}, status_code=200)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def start_api_server(host: str = "0.0.0.0", port: int = 8000):
"""
Start the API server using uvicorn.
Parameters:
host (str): The host for the server.
port (int): The port for the server.
"""
try:
logger.info(f"Starting server at {host}:{port}")
uvicorn.run(app, host=host, port=port)
except Exception as e:
logger.exception(f"Failed to start server: {e}")
# Here you could add any cleanup code or error recovery code.
if __name__ == "__main__":
start_api_server()