<!-- .github/pull_request_template.md --> ## Description Fix “Resource not accessible by integration” error in greetings workflow This PR updates the community | Greetings GitHub Actions workflow to ensure it can successfully post greeting comments on newly opened issues and pull requests — including PRs from forks — without hitting the “Resource not accessible by integration” error. ## Changes - Switched PR trigger from `pull_request` to `pull_request_target` to run in the context of the base repository and grant write-scoped `GITHUB_TOKEN` for commenting on forked PRs. - Added explicit `permissions` block with: - `issues: write` - `pull-requests: write` - Limited triggers to `types: [opened]` for both issues and PRs to avoid unnecessary runs. - Preserved existing greeting messages for issues and pull requests. ## Reason for change The workflow was failing because the default `GITHUB_TOKEN` in `pull_request` events is read-only for forks, preventing the bot from posting comments. `pull_request_target` with explicit permissions solves this while maintaining security. ## DCO Affirmation I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin. |
||
|---|---|---|
| .github | ||
| alembic | ||
| assets | ||
| bin | ||
| cognee | ||
| cognee-frontend | ||
| cognee-mcp | ||
| cognee-starter-kit | ||
| deployment | ||
| distributed | ||
| evals | ||
| examples | ||
| licenses | ||
| logs | ||
| notebooks | ||
| tools | ||
| .dockerignore | ||
| .env.template | ||
| .gitattributes | ||
| .gitguardian.yml | ||
| .gitignore | ||
| .pre-commit-config.yaml | ||
| .pylintrc | ||
| alembic.ini | ||
| CODE_OF_CONDUCT.md | ||
| cognee-gui.py | ||
| CONTRIBUTING.md | ||
| CONTRIBUTORS.md | ||
| DCO.md | ||
| docker-compose.yml | ||
| Dockerfile | ||
| entrypoint.sh | ||
| LICENSE | ||
| mypy.ini | ||
| NOTICE.md | ||
| poetry.lock | ||
| pyproject.toml | ||
| README.md | ||
| SECURITY.md | ||
| uv.lock | ||
cognee - Memory for AI Agents in 5 lines of code
Demo . Learn more · Join Discord · Join r/AIMemory . Docs . cognee community repo
🚀 We launched Cogwit beta (Fully-hosted AI Memory): Sign up here! 🚀
Build dynamic memory for Agents and replace RAG using scalable, modular ECL (Extract, Cognify, Load) pipelines.
🌐 Available Languages : Deutsch | Español | français | 日本語 | 한국어 | Português | Русский | 中文
Features
- Interconnect and retrieve your past conversations, documents, images and audio transcriptions
- Replaces RAG systems and reduces developer effort, and cost.
- Load data to graph and vector databases using only Pydantic
- Manipulate your data while ingesting from 30+ data sources
Get Started
Get started quickly with a Google Colab notebook , Deepnote notebook or starter repo
Contributing
Your contributions are at the core of making this a true open source project. Any contributions you make are greatly appreciated. See CONTRIBUTING.md for more information.
📦 Installation
You can install Cognee using either pip, poetry, uv or any other python package manager. Cognee supports Python 3.8 to 3.12
With pip
pip install cognee
Local Cognee installation
You can install the local Cognee repo using pip, poetry and uv. For local pip installation please make sure your pip version is above version 21.3.
with UV with all optional dependencies
uv sync --all-extras
💻 Basic Usage
Setup
import os
os.environ["LLM_API_KEY"] = "YOUR OPENAI_API_KEY"
You can also set the variables by creating .env file, using our template. To use different LLM providers, for more info check out our documentation
Simple example
This script will run the default pipeline:
import cognee
import asyncio
async def main():
# Add text to cognee
await cognee.add("Natural language processing (NLP) is an interdisciplinary subfield of computer science and information retrieval.")
# Generate the knowledge graph
await cognee.cognify()
# Query the knowledge graph
results = await cognee.search("Tell me about NLP")
# Display the results
for result in results:
print(result)
if __name__ == '__main__':
asyncio.run(main())
Example output:
Natural Language Processing (NLP) is a cross-disciplinary and interdisciplinary field that involves computer science and information retrieval. It focuses on the interaction between computers and human language, enabling machines to understand and process natural language.
Our paper is out! Read here
Cognee UI
You can also cognify your files and query using cognee UI.

Try cognee UI out locally here.
Understand our architecture
Demos
- Cogwit Beta demo:
- Simple GraphRAG demo
- cognee with Ollama
Code of Conduct
We are committed to making open source an enjoyable and respectful experience for our community. See CODE_OF_CONDUCT for more information.