cognee/evals/eval_swe_bench.py
2024-11-29 11:33:05 +01:00

200 lines
6.1 KiB
Python

import argparse
import json
import subprocess
import sys
from pathlib import Path
from datasets import Dataset
from swebench.harness.utils import load_swebench_dataset
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
import cognee
from cognee.shared.data_models import SummarizedContent
from cognee.shared.utils import render_graph
from cognee.tasks.repo_processor import (
enrich_dependency_graph,
expand_dependency_graph,
get_repo_file_dependencies,
)
from cognee.tasks.storage import add_data_points
from cognee.tasks.summarization import summarize_code
from cognee.modules.pipelines import Task, run_tasks
from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline
from cognee.api.v1.search import SearchType
from cognee.infrastructure.databases.graph import get_graph_engine
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.llm.prompts import read_query_prompt
from evals.eval_utils import download_instances
def check_install_package(package_name):
"""
Check if a pip package is installed and install it if not.
Returns True if package is/was installed successfully, False otherwise.
"""
try:
__import__(package_name)
return True
except ImportError:
try:
subprocess.check_call(
[sys.executable, "-m", "pip", "install", package_name]
)
return True
except subprocess.CalledProcessError:
return False
async def generate_patch_with_cognee(instance, search_type=SearchType.CHUNKS):
await cognee.prune.prune_data()
await cognee.prune.prune_system()
#dataset_name = "SWE_test_data"
#await cognee.add('', dataset_name = dataset_name)
# repo_path = download_github_repo(instance, '../RAW_GIT_REPOS')
repo_path = '/Users/borisarzentar/Projects/graphrag'
tasks = [
Task(get_repo_file_dependencies),
Task(add_data_points, task_config = { "batch_size": 50 }),
Task(enrich_dependency_graph, task_config = { "batch_size": 50 }),
Task(expand_dependency_graph, task_config = { "batch_size": 50 }),
Task(add_data_points, task_config = { "batch_size": 50 }),
# Task(summarize_code, summarization_model = SummarizedContent),
]
pipeline = run_tasks(tasks, repo_path, "cognify_code_pipeline")
async for result in pipeline:
print(result)
print('Here we have the repo under the repo_path')
await render_graph(None, include_labels = True, include_nodes = True)
problem_statement = instance['problem_statement']
instructions = read_query_prompt("patch_gen_instructions.txt")
graph_str = 'HERE WE SHOULD PASS THE TRIPLETS FROM GRAPHRAG'
prompt = "\n".join(
[
instructions,
"<patch>",
PATCH_EXAMPLE,
"</patch>",
"This is the knowledge graph:",
graph_str,
]
)
answer_prediction = await llm_client.acreate_structured_output(
text_input=problem_statement,
system_prompt=prompt,
response_model=str,
)
return answer_prediction
async def generate_patch_without_cognee(instance, llm_client):
problem_statement = instance['problem_statement']
prompt = instance["text"]
answer_prediction = await llm_client.acreate_structured_output(
text_input=problem_statement,
system_prompt=prompt,
response_model=str,
)
return answer_prediction
async def get_preds(dataset, with_cognee=True):
llm_client = get_llm_client()
if with_cognee:
model_name = "with_cognee"
futures = [
(instance["instance_id"], generate_patch_with_cognee(instance))
for instance in dataset
]
else:
model_name = "without_cognee"
futures = [
(instance["instance_id"], generate_patch_without_cognee(instance, llm_client))
for instance in dataset
]
model_patches = await asyncio.gather(*[x[1] for x in futures])
preds = [
{
"instance_id": instance_id,
"model_patch": model_patch,
"model_name_or_path": model_name,
}
for (instance_id, _), model_patch in zip(futures, model_patches)
]
return preds
async def main():
parser = argparse.ArgumentParser(
description="Run LLM predictions on SWE-bench dataset")
parser.add_argument('--cognee_off', action='store_true')
parser.add_argument("--max_workers", type=int, required=True)
args = parser.parse_args()
for dependency in ["transformers", "sentencepiece", "swebench"]:
check_install_package(dependency)
if args.cognee_off:
dataset_name = 'princeton-nlp/SWE-bench_Lite_bm25_13K'
dataset = load_swebench_dataset(dataset_name, split='test')
predictions_path = "preds_nocognee.json"
if not Path(predictions_path).exists():
preds = await get_preds(dataset, with_cognee=False)
with open(predictions_path, "w") as file:
json.dump(preds, file)
else:
dataset_name = 'princeton-nlp/SWE-bench_Lite'
swe_dataset = load_swebench_dataset(
dataset_name, split='test')[:1]
filepath = Path("SWE-bench_testsample")
if filepath.exists():
dataset = Dataset.load_from_disk(filepath)
else:
dataset = download_instances(swe_dataset, filepath)
predictions_path = "preds.json"
preds = await get_preds(dataset, with_cognee=not args.cognee_off)
with open(predictions_path, "w") as file:
json.dump(preds, file)
subprocess.run(
[
"python",
"-m",
"swebench.harness.run_evaluation",
"--dataset_name",
dataset_name,
"--split",
"test",
"--predictions_path",
predictions_path,
"--max_workers",
str(args.max_workers),
"--run_id",
"test_run",
]
)
if __name__ == "__main__":
import asyncio
asyncio.run(main(), debug=True)