200 lines
6.1 KiB
Python
200 lines
6.1 KiB
Python
import argparse
|
|
import json
|
|
import subprocess
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
from datasets import Dataset
|
|
from swebench.harness.utils import load_swebench_dataset
|
|
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
|
|
|
|
import cognee
|
|
|
|
from cognee.shared.data_models import SummarizedContent
|
|
from cognee.shared.utils import render_graph
|
|
from cognee.tasks.repo_processor import (
|
|
enrich_dependency_graph,
|
|
expand_dependency_graph,
|
|
get_repo_file_dependencies,
|
|
)
|
|
from cognee.tasks.storage import add_data_points
|
|
from cognee.tasks.summarization import summarize_code
|
|
from cognee.modules.pipelines import Task, run_tasks
|
|
from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline
|
|
from cognee.api.v1.search import SearchType
|
|
from cognee.infrastructure.databases.graph import get_graph_engine
|
|
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
|
from cognee.infrastructure.llm.prompts import read_query_prompt
|
|
from evals.eval_utils import download_instances
|
|
|
|
|
|
def check_install_package(package_name):
|
|
"""
|
|
Check if a pip package is installed and install it if not.
|
|
Returns True if package is/was installed successfully, False otherwise.
|
|
"""
|
|
try:
|
|
__import__(package_name)
|
|
return True
|
|
except ImportError:
|
|
try:
|
|
subprocess.check_call(
|
|
[sys.executable, "-m", "pip", "install", package_name]
|
|
)
|
|
return True
|
|
except subprocess.CalledProcessError:
|
|
return False
|
|
|
|
async def generate_patch_with_cognee(instance, search_type=SearchType.CHUNKS):
|
|
|
|
await cognee.prune.prune_data()
|
|
await cognee.prune.prune_system()
|
|
|
|
#dataset_name = "SWE_test_data"
|
|
|
|
#await cognee.add('', dataset_name = dataset_name)
|
|
|
|
# repo_path = download_github_repo(instance, '../RAW_GIT_REPOS')
|
|
|
|
repo_path = '/Users/borisarzentar/Projects/graphrag'
|
|
|
|
tasks = [
|
|
Task(get_repo_file_dependencies),
|
|
Task(add_data_points, task_config = { "batch_size": 50 }),
|
|
Task(enrich_dependency_graph, task_config = { "batch_size": 50 }),
|
|
Task(expand_dependency_graph, task_config = { "batch_size": 50 }),
|
|
Task(add_data_points, task_config = { "batch_size": 50 }),
|
|
# Task(summarize_code, summarization_model = SummarizedContent),
|
|
]
|
|
|
|
pipeline = run_tasks(tasks, repo_path, "cognify_code_pipeline")
|
|
|
|
async for result in pipeline:
|
|
print(result)
|
|
|
|
print('Here we have the repo under the repo_path')
|
|
|
|
await render_graph(None, include_labels = True, include_nodes = True)
|
|
|
|
problem_statement = instance['problem_statement']
|
|
instructions = read_query_prompt("patch_gen_instructions.txt")
|
|
|
|
graph_str = 'HERE WE SHOULD PASS THE TRIPLETS FROM GRAPHRAG'
|
|
|
|
prompt = "\n".join(
|
|
[
|
|
instructions,
|
|
"<patch>",
|
|
PATCH_EXAMPLE,
|
|
"</patch>",
|
|
"This is the knowledge graph:",
|
|
graph_str,
|
|
]
|
|
)
|
|
|
|
answer_prediction = await llm_client.acreate_structured_output(
|
|
text_input=problem_statement,
|
|
system_prompt=prompt,
|
|
response_model=str,
|
|
)
|
|
|
|
return answer_prediction
|
|
|
|
|
|
async def generate_patch_without_cognee(instance, llm_client):
|
|
problem_statement = instance['problem_statement']
|
|
prompt = instance["text"]
|
|
|
|
answer_prediction = await llm_client.acreate_structured_output(
|
|
text_input=problem_statement,
|
|
system_prompt=prompt,
|
|
response_model=str,
|
|
)
|
|
return answer_prediction
|
|
|
|
|
|
async def get_preds(dataset, with_cognee=True):
|
|
llm_client = get_llm_client()
|
|
|
|
if with_cognee:
|
|
model_name = "with_cognee"
|
|
futures = [
|
|
(instance["instance_id"], generate_patch_with_cognee(instance))
|
|
for instance in dataset
|
|
]
|
|
else:
|
|
model_name = "without_cognee"
|
|
futures = [
|
|
(instance["instance_id"], generate_patch_without_cognee(instance, llm_client))
|
|
for instance in dataset
|
|
]
|
|
model_patches = await asyncio.gather(*[x[1] for x in futures])
|
|
|
|
preds = [
|
|
{
|
|
"instance_id": instance_id,
|
|
"model_patch": model_patch,
|
|
"model_name_or_path": model_name,
|
|
}
|
|
for (instance_id, _), model_patch in zip(futures, model_patches)
|
|
]
|
|
|
|
return preds
|
|
|
|
|
|
async def main():
|
|
parser = argparse.ArgumentParser(
|
|
description="Run LLM predictions on SWE-bench dataset")
|
|
parser.add_argument('--cognee_off', action='store_true')
|
|
parser.add_argument("--max_workers", type=int, required=True)
|
|
args = parser.parse_args()
|
|
|
|
for dependency in ["transformers", "sentencepiece", "swebench"]:
|
|
check_install_package(dependency)
|
|
|
|
if args.cognee_off:
|
|
dataset_name = 'princeton-nlp/SWE-bench_Lite_bm25_13K'
|
|
dataset = load_swebench_dataset(dataset_name, split='test')
|
|
predictions_path = "preds_nocognee.json"
|
|
if not Path(predictions_path).exists():
|
|
preds = await get_preds(dataset, with_cognee=False)
|
|
with open(predictions_path, "w") as file:
|
|
json.dump(preds, file)
|
|
else:
|
|
dataset_name = 'princeton-nlp/SWE-bench_Lite'
|
|
swe_dataset = load_swebench_dataset(
|
|
dataset_name, split='test')[:1]
|
|
filepath = Path("SWE-bench_testsample")
|
|
if filepath.exists():
|
|
dataset = Dataset.load_from_disk(filepath)
|
|
else:
|
|
dataset = download_instances(swe_dataset, filepath)
|
|
predictions_path = "preds.json"
|
|
preds = await get_preds(dataset, with_cognee=not args.cognee_off)
|
|
with open(predictions_path, "w") as file:
|
|
json.dump(preds, file)
|
|
|
|
|
|
subprocess.run(
|
|
[
|
|
"python",
|
|
"-m",
|
|
"swebench.harness.run_evaluation",
|
|
"--dataset_name",
|
|
dataset_name,
|
|
"--split",
|
|
"test",
|
|
"--predictions_path",
|
|
predictions_path,
|
|
"--max_workers",
|
|
str(args.max_workers),
|
|
"--run_id",
|
|
"test_run",
|
|
]
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import asyncio
|
|
|
|
asyncio.run(main(), debug=True)
|