cognee/cognitive_architecture/modules/cognify/vector/load_propositions.py

34 lines
1.3 KiB
Python

import asyncio
from cognitive_architecture.infrastructure.llm.get_llm_client import get_llm_client
from qdrant_client import models
from cognitive_architecture.infrastructure.databases.vector.get_vector_database import get_vector_database
async def get_embeddings(texts):
client = get_llm_client()
tasks = [ client.async_get_embedding_with_backoff(text, "text-embedding-3-large") for text in texts]
results = await asyncio.gather(*tasks)
return results
async def upload_embedding(id, metadata, some_embeddings, collection_name, client):
print(id)
# if some_embeddings and isinstance(some_embeddings[0], list):
# some_embeddings = [item for sublist in some_embeddings for item in sublist]
client.upload_points(
collection_name=collection_name,
points=[
models.PointStruct(
id=id, vector={"content" :some_embeddings}, payload=metadata
)
]
,
)
async def add_propositions(node_descriptions, client):
for item in node_descriptions:
print(item['node_id'])
embeddings = await get_embeddings(item['description'])
await upload_embedding(id = item['node_id'], metadata = {"meta":item['description']}, some_embeddings = embeddings[0], collection_name= item['layer_decomposition_uuid'],client= client)