cognee/evals/eval_framework/evaluation/run_evaluation_module.py
hajdul88 6a0c0e3ef8
feat: Cognee evaluation framework development (#498)
<!-- .github/pull_request_template.md -->

This PR contains the evaluation framework development for cognee

## DCO Affirmation
I affirm that all code in every commit of this pull request conforms to
the terms of the Topoteretes Developer Certificate of Origin


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Expanded evaluation framework now integrates asynchronous corpus
building, question answering, and performance evaluation with adaptive
benchmarks for improved metrics (correctness, exact match, and F1
score).

- **Infrastructure**
- Added database integration for persistent storage of questions,
answers, and metrics.
- Launched an interactive metrics dashboard featuring advanced
visualizations.
- Introduced an automated testing workflow for continuous quality
assurance.

- **Documentation**
  - Updated guidelines for generating concise, clear answers.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-02-11 16:31:54 +01:00

59 lines
2.4 KiB
Python

import logging
import json
from evals.eval_framework.evaluation.evaluation_executor import EvaluationExecutor
from evals.eval_framework.metrics_dashboard import generate_metrics_dashboard
from cognee.infrastructure.files.storage import LocalStorage
from cognee.infrastructure.databases.relational.get_relational_engine import (
get_relational_engine,
get_relational_config,
)
from cognee.modules.data.models.metrics_data import Metrics
from cognee.modules.data.models.metrics_base import MetricsBase
async def create_and_insert_metrics_table(questions_payload):
relational_config = get_relational_config()
relational_engine = get_relational_engine()
if relational_engine.engine.dialect.name == "sqlite":
LocalStorage.ensure_directory_exists(relational_config.db_path)
async with relational_engine.engine.begin() as connection:
if len(MetricsBase.metadata.tables.keys()) > 0:
await connection.run_sync(MetricsBase.metadata.create_all)
async with relational_engine.get_async_session() as session:
data_point = Metrics(payload=questions_payload)
session.add(data_point)
await session.commit()
async def run_evaluation(params: dict) -> None:
if params.get("evaluating_answers"):
logging.info("Evaluation started...")
try:
with open(params["answers_path"], "r", encoding="utf-8") as f:
answers = json.load(f)
except FileNotFoundError:
raise FileNotFoundError(f"Could not find the file: {params['answers_path']}")
except json.JSONDecodeError as e:
raise ValueError(f"Error decoding JSON from {params['answers_path']}: {e}")
logging.info(f"Loaded {len(answers)} answers from {params['answers_path']}")
evaluator = EvaluationExecutor(evaluator_engine=params["evaluation_engine"])
metrics = await evaluator.execute(
answers=answers, evaluator_metrics=params["evaluation_metrics"]
)
with open(params["metrics_path"], "w", encoding="utf-8") as f:
json.dump(metrics, f, ensure_ascii=False, indent=4)
await create_and_insert_metrics_table(metrics)
logging.info("Evaluation End...")
if params.get("dashboard"):
generate_metrics_dashboard(
json_data=params["metrics_path"],
output_file=params["dashboard_path"],
benchmark=params["benchmark"],
)