<!-- .github/pull_request_template.md --> ## Description Delete legacy search implementations after migrating to new retriever classes ## DCO Affirmation I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin <!-- This is an auto-generated comment: release notes by coderabbit.ai --> ## Summary by CodeRabbit - **New Features** - Enhanced search and retrieval capabilities, providing improved context resolution for code queries, completions, summaries, and graph connections. - **Refactor** - Shifted to a modular, object-oriented approach that consolidates query logic and streamlines error management for a more robust and scalable experience. - **Bug Fixes** - Improved error handling for unsupported search types and retrieval operations. <!-- end of auto-generated comment: release notes by coderabbit.ai -->
152 lines
5 KiB
Python
152 lines
5 KiB
Python
import cognee
|
|
from cognee.modules.search.types import SearchType
|
|
from cognee.infrastructure.databases.vector import get_vector_engine
|
|
from cognee.modules.retrieval.utils.brute_force_triplet_search import brute_force_triplet_search
|
|
from cognee.modules.retrieval.graph_completion_retriever import GraphCompletionRetriever
|
|
from functools import partial
|
|
from cognee.api.v1.cognify.cognify_v2 import get_default_tasks
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
async def get_raw_context(instance: dict) -> str:
|
|
return instance["context"]
|
|
|
|
|
|
async def cognify_instance(instance: dict, task_indices: list[int] = None):
|
|
await cognee.prune.prune_data()
|
|
await cognee.prune.prune_system(metadata=True)
|
|
for title, sentences in instance["context"]:
|
|
await cognee.add("\n".join(sentences), dataset_name="QA")
|
|
all_cognify_tasks = await get_default_tasks()
|
|
if task_indices:
|
|
selected_tasks = [all_cognify_tasks[ind] for ind in task_indices]
|
|
else:
|
|
selected_tasks = all_cognify_tasks
|
|
await cognee.cognify("QA", tasks=selected_tasks)
|
|
|
|
|
|
def _insight_to_string(triplet: tuple) -> str:
|
|
if not (isinstance(triplet, tuple) and len(triplet) == 3):
|
|
logger.warning("Invalid input: Expected a tuple of length 3.")
|
|
return ""
|
|
|
|
node1, edge, node2 = triplet
|
|
|
|
if not (isinstance(node1, dict) and isinstance(edge, dict) and isinstance(node2, dict)):
|
|
logger.warning("Invalid input: Each element in the tuple must be a dictionary.")
|
|
return ""
|
|
|
|
node1_name = node1["name"] if "name" in node1 else "N/A"
|
|
node1_description = (
|
|
node1["description"]
|
|
if "description" in node1
|
|
else node1["text"]
|
|
if "text" in node1
|
|
else "N/A"
|
|
)
|
|
node1_string = f"name: {node1_name}, description: {node1_description}"
|
|
node2_name = node2["name"] if "name" in node2 else "N/A"
|
|
node2_description = (
|
|
node2["description"]
|
|
if "description" in node2
|
|
else node2["text"]
|
|
if "text" in node2
|
|
else "N/A"
|
|
)
|
|
node2_string = f"name: {node2_name}, description: {node2_description}"
|
|
|
|
edge_string = edge.get("relationship_name", "")
|
|
|
|
if not edge_string:
|
|
logger.warning("Missing required field: 'relationship_name' in edge dictionary.")
|
|
return ""
|
|
|
|
triplet_str = f"{node1_string} -- {edge_string} -- {node2_string}"
|
|
return triplet_str
|
|
|
|
|
|
async def get_context_with_cognee(
|
|
instance: dict,
|
|
task_indices: list[int] = None,
|
|
search_types: list[SearchType] = [SearchType.INSIGHTS, SearchType.SUMMARIES, SearchType.CHUNKS],
|
|
) -> str:
|
|
await cognify_instance(instance, task_indices)
|
|
|
|
search_results = []
|
|
for search_type in search_types:
|
|
raw_search_results = await cognee.search(
|
|
query_type=search_type, query_text=instance["question"]
|
|
)
|
|
|
|
if search_type == SearchType.INSIGHTS:
|
|
res_list = [_insight_to_string(edge) for edge in raw_search_results]
|
|
else:
|
|
res_list = [
|
|
context_item.get("text", "")
|
|
for context_item in raw_search_results
|
|
if isinstance(context_item, dict)
|
|
]
|
|
if all(not text for text in res_list):
|
|
logger.warning(
|
|
"res_list contains only empty strings: No valid 'text' entries found in raw_search_results."
|
|
)
|
|
|
|
search_results += res_list
|
|
|
|
search_results_str = "\n".join(search_results)
|
|
|
|
return search_results_str
|
|
|
|
|
|
def create_cognee_context_getter(
|
|
task_indices=None, search_types=[SearchType.SUMMARIES, SearchType.CHUNKS]
|
|
):
|
|
return partial(get_context_with_cognee, task_indices=task_indices, search_types=search_types)
|
|
|
|
|
|
async def get_context_with_simple_rag(instance: dict) -> str:
|
|
await cognify_instance(instance)
|
|
|
|
vector_engine = get_vector_engine()
|
|
found_chunks = await vector_engine.search("DocumentChunk_text", instance["question"], limit=5)
|
|
|
|
search_results_str = "\n".join([context_item.payload["text"] for context_item in found_chunks])
|
|
|
|
return search_results_str
|
|
|
|
|
|
async def get_context_with_brute_force_triplet_search(instance: dict) -> str:
|
|
await cognify_instance(instance)
|
|
|
|
found_triplets = await brute_force_triplet_search(instance["question"], top_k=5)
|
|
|
|
retriever = GraphCompletionRetriever()
|
|
search_results_str = await retriever.resolve_edges_to_text(found_triplets)
|
|
|
|
return search_results_str
|
|
|
|
|
|
valid_pipeline_slices = {
|
|
"extract_graph": {
|
|
"slice": [0, 1, 2, 3, 5],
|
|
"search_types": [SearchType.INSIGHTS, SearchType.CHUNKS],
|
|
},
|
|
"summarize": {
|
|
"slice": [0, 1, 2, 3, 4, 5],
|
|
"search_types": [SearchType.INSIGHTS, SearchType.SUMMARIES, SearchType.CHUNKS],
|
|
},
|
|
}
|
|
|
|
qa_context_providers = {
|
|
"no_rag": get_raw_context,
|
|
"cognee": get_context_with_cognee,
|
|
"simple_rag": get_context_with_simple_rag,
|
|
"brute_force": get_context_with_brute_force_triplet_search,
|
|
} | {
|
|
name: create_cognee_context_getter(
|
|
task_indices=value["slice"], search_types=value["search_types"]
|
|
)
|
|
for name, value in valid_pipeline_slices.items()
|
|
}
|