86 lines
2.8 KiB
Python
86 lines
2.8 KiB
Python
import asyncio
|
|
from pprint import pprint
|
|
|
|
import cognee
|
|
from cognee.modules.engine.operations.setup import setup
|
|
from cognee.modules.users.methods import get_default_user
|
|
from cognee.shared.logging_utils import setup_logging, INFO
|
|
from cognee.modules.pipelines import Task
|
|
from cognee.api.v1.search import SearchType
|
|
|
|
# Prerequisites:
|
|
# 1. Copy `.env.template` and rename it to `.env`.
|
|
# 2. Add your OpenAI API key to the `.env` file in the `LLM_API_KEY` field:
|
|
# LLM_API_KEY = "your_key_here"
|
|
|
|
|
|
async def main():
|
|
# Create a clean slate for cognee -- reset data and system state
|
|
print("Resetting cognee data...")
|
|
await cognee.prune.prune_data()
|
|
await cognee.prune.prune_system(metadata=True)
|
|
print("Data reset complete.\n")
|
|
|
|
# Create relational database and tables
|
|
await setup()
|
|
|
|
# cognee knowledge graph will be created based on this text
|
|
text = """
|
|
Natural language processing (NLP) is an interdisciplinary
|
|
subfield of computer science and information retrieval.
|
|
"""
|
|
|
|
print("Adding text to cognee:")
|
|
print(text.strip())
|
|
|
|
# Let's recreate the cognee add pipeline through the custom pipeline framework
|
|
from cognee.tasks.ingestion import ingest_data, resolve_data_directories
|
|
|
|
user = await get_default_user()
|
|
|
|
# Values for tasks need to be filled before calling the pipeline
|
|
add_tasks = [
|
|
Task(resolve_data_directories, include_subdirectories=True),
|
|
Task(
|
|
ingest_data,
|
|
"main_dataset",
|
|
user,
|
|
),
|
|
]
|
|
# Forward tasks to custom pipeline along with data and user information
|
|
await cognee.run_custom_pipeline(
|
|
tasks=add_tasks, data=text, user=user, dataset="main_dataset", pipeline_name="add_pipeline"
|
|
)
|
|
print("Text added successfully.\n")
|
|
|
|
# Use LLMs and cognee to create knowledge graph
|
|
from cognee.api.v1.cognify.cognify import get_default_tasks
|
|
|
|
cognify_tasks = await get_default_tasks(user=user)
|
|
print("Recreating existing cognify pipeline in custom pipeline to create knowledge graph...\n")
|
|
await cognee.run_custom_pipeline(
|
|
tasks=cognify_tasks, user=user, dataset="main_dataset", pipeline_name="cognify_pipeline"
|
|
)
|
|
print("Cognify process complete.\n")
|
|
|
|
query_text = "Tell me about NLP"
|
|
print(f"Searching cognee for insights with query: '{query_text}'")
|
|
# Query cognee for insights on the added text
|
|
search_results = await cognee.search(
|
|
query_type=SearchType.GRAPH_COMPLETION, query_text=query_text
|
|
)
|
|
|
|
print("Search results:")
|
|
# Display results
|
|
for result_text in search_results:
|
|
pprint(result_text)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
logger = setup_logging(log_level=INFO)
|
|
loop = asyncio.new_event_loop()
|
|
asyncio.set_event_loop(loop)
|
|
try:
|
|
loop.run_until_complete(main())
|
|
finally:
|
|
loop.run_until_complete(loop.shutdown_asyncgens())
|