cognee/examples/python/simple_example.py

52 lines
1.5 KiB
Python

import asyncio
import cognee
from cognee.api.v1.search import SearchType
# Prerequisites:
# 1. Copy `.env.template` and rename it to `.env`.
# 2. Add your OpenAI API key to the `.env` file in the `LLM_API_KEY` field:
# LLM_API_KEY = "your_key_here"
async def main():
# Create a clean slate for cognee -- reset data and system state
print("Resetting cognee data...")
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
print("Data reset complete.\n")
# cognee knowledge graph will be created based on this text
text = """
Natural language processing (NLP) is an interdisciplinary
subfield of computer science and information retrieval.
"""
print("Adding text to cognee:")
print(text.strip())
# Add the text, and make it available for cognify
await cognee.add(text)
print("Text added successfully.\n")
print("Running cognify to create knowledge graph...")
# Use LLMs and cognee to create knowledge graph
await cognee.cognify()
print("Cognify process complete.\n")
query_text = 'Tell me about NLP'
print(f"Searching cognee for insights with query: '{query_text}'")
# Query cognee for insights on the added text
search_results = await cognee.search(
SearchType.INSIGHTS, query_text=query_text
)
print("Search results:")
# Display results
for result_text in search_results:
print(result_text)
if __name__ == '__main__':
asyncio.run(main())