52 lines
1.5 KiB
Python
52 lines
1.5 KiB
Python
import asyncio
|
|
|
|
import cognee
|
|
from cognee.api.v1.search import SearchType
|
|
|
|
# Prerequisites:
|
|
# 1. Copy `.env.template` and rename it to `.env`.
|
|
# 2. Add your OpenAI API key to the `.env` file in the `LLM_API_KEY` field:
|
|
# LLM_API_KEY = "your_key_here"
|
|
|
|
|
|
async def main():
|
|
# Create a clean slate for cognee -- reset data and system state
|
|
print("Resetting cognee data...")
|
|
await cognee.prune.prune_data()
|
|
await cognee.prune.prune_system(metadata=True)
|
|
print("Data reset complete.\n")
|
|
|
|
# cognee knowledge graph will be created based on this text
|
|
text = """
|
|
Natural language processing (NLP) is an interdisciplinary
|
|
subfield of computer science and information retrieval.
|
|
"""
|
|
|
|
print("Adding text to cognee:")
|
|
print(text.strip())
|
|
# Add the text, and make it available for cognify
|
|
await cognee.add(text)
|
|
print("Text added successfully.\n")
|
|
|
|
|
|
print("Running cognify to create knowledge graph...")
|
|
# Use LLMs and cognee to create knowledge graph
|
|
await cognee.cognify()
|
|
print("Cognify process complete.\n")
|
|
|
|
|
|
query_text = 'Tell me about NLP'
|
|
print(f"Searching cognee for insights with query: '{query_text}'")
|
|
# Query cognee for insights on the added text
|
|
search_results = await cognee.search(
|
|
SearchType.INSIGHTS, query_text=query_text
|
|
)
|
|
|
|
print("Search results:")
|
|
# Display results
|
|
for result_text in search_results:
|
|
print(result_text)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
asyncio.run(main())
|