127 lines
4.5 KiB
Python
127 lines
4.5 KiB
Python
"""Configuration for cognee - cognitive architecture framework."""
|
|
import os
|
|
import configparser
|
|
import uuid
|
|
from typing import Optional, Dict, Any
|
|
from dataclasses import dataclass, field
|
|
from pathlib import Path
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
base_dir = Path(__file__).resolve().parent.parent
|
|
# Load the .env file from the base directory
|
|
dotenv_path = base_dir / ".env"
|
|
load_dotenv(dotenv_path=dotenv_path)
|
|
|
|
|
|
@dataclass
|
|
class Config:
|
|
""" Configuration for cognee - cognitive architecture framework. """
|
|
cognee_dir: str = field(
|
|
default_factory=lambda: os.getenv("COG_ARCH_DIR", "cognitive_achitecture")
|
|
)
|
|
config_path: str = field(
|
|
default_factory=lambda: os.path.join(
|
|
os.getenv("COG_ARCH_DIR", "cognitive_achitecture"), "config"
|
|
)
|
|
)
|
|
|
|
db_path = Path(__file__).resolve().parent / "database/data"
|
|
|
|
vectordb: str = os.getenv("VECTORDB", "weaviate")
|
|
db_type: str = os.getenv("DB_TYPE", "sqlite")
|
|
db_name: str = os.getenv("DB_NAME", "cognee.db")
|
|
db_host: str = os.getenv("DB_HOST", "localhost")
|
|
db_port: str = os.getenv("DB_PORT", "5432")
|
|
db_user: str = os.getenv("DB_USER", "cognee")
|
|
db_password: str = os.getenv("DB_PASSWORD", "cognee")
|
|
sqlalchemy_logging: bool = os.getenv("SQLALCHEMY_LOGGING", True)
|
|
graph_name = os.getenv("GRAPH_NAME", "cognee_graph.pkl")
|
|
|
|
# Model parameters
|
|
model: str = "gpt-4-1106-preview"
|
|
model_endpoint: str = "openai"
|
|
openai_key: Optional[str] = os.getenv("OPENAI_API_KEY")
|
|
openai_temperature: float = float(os.getenv("OPENAI_TEMPERATURE", 0.0))
|
|
|
|
# Embedding parameters
|
|
embedding_model: str = "openai"
|
|
embedding_dim: int = 1536
|
|
embedding_chunk_size: int = 300
|
|
|
|
# Database parameters
|
|
if (
|
|
os.getenv("ENV") == "prod"
|
|
or os.getenv("ENV") == "dev"
|
|
or os.getenv("AWS_ENV") == "dev"
|
|
or os.getenv("AWS_ENV") == "prd"
|
|
):
|
|
graph_database_url: str = os.getenv("GRAPH_DB_URL_PROD")
|
|
graph_database_username: str = os.getenv("GRAPH_DB_USER")
|
|
graph_database_password: str = os.getenv("GRAPH_DB_PW")
|
|
else:
|
|
graph_database_url: str = os.getenv("GRAPH_DB_URL")
|
|
graph_database_username: str = os.getenv("GRAPH_DB_USER")
|
|
graph_database_password: str = os.getenv("GRAPH_DB_PW")
|
|
weaviate_url: str = os.getenv("WEAVIATE_URL")
|
|
weaviate_api_key: str = os.getenv("WEAVIATE_API_KEY")
|
|
|
|
if (
|
|
os.getenv("ENV") == "prod"
|
|
or os.getenv("ENV") == "dev"
|
|
or os.getenv("AWS_ENV") == "dev"
|
|
or os.getenv("AWS_ENV") == "prd"
|
|
):
|
|
db_host: str = os.getenv("POSTGRES_PROD_HOST")
|
|
db_user: str = os.getenv("POSTGRES_USER")
|
|
db_password: str = os.getenv("POSTGRES_PASSWORD")
|
|
db_name: str = os.getenv("POSTGRES_DB")
|
|
|
|
|
|
# Client ID
|
|
anon_clientid: Optional[str] = field(default_factory=lambda: uuid.uuid4().hex)
|
|
|
|
def load(self):
|
|
"""Loads the configuration from a file or environment variables."""
|
|
config = configparser.ConfigParser()
|
|
config.read(self.config_path)
|
|
|
|
# Override with environment variables if they exist
|
|
for attr in self.__annotations__:
|
|
env_value = os.getenv(attr.upper())
|
|
if env_value is not None:
|
|
setattr(self, attr, env_value)
|
|
|
|
# Load from config file
|
|
if config.sections():
|
|
for section in config.sections():
|
|
for key, value in config.items(section):
|
|
if hasattr(self, key):
|
|
setattr(self, key, value)
|
|
|
|
def save(self):
|
|
"""Saves the current configuration to a file."""
|
|
config = configparser.ConfigParser()
|
|
|
|
# Save the current settings to the config file
|
|
for attr, value in self.__dict__.items():
|
|
section, option = attr.split("_", 1)
|
|
if not config.has_section(section):
|
|
config.add_section(section)
|
|
config.set(section, option, str(value))
|
|
|
|
with open(self.config_path, "w") as configfile:
|
|
config.write(configfile)
|
|
|
|
def to_dict(self) -> Dict[str, Any]:
|
|
"""Returns a dictionary representation of the configuration."""
|
|
return {attr: getattr(self, attr) for attr in self.__annotations__}
|
|
|
|
@classmethod
|
|
def from_dict(cls, config_dict: Dict[str, Any]) -> "Config":
|
|
"""Creates a Config instance from a dictionary."""
|
|
config = cls()
|
|
for attr, value in config_dict.items():
|
|
if hasattr(config, attr):
|
|
setattr(config, attr, value)
|
|
return config
|