<!-- .github/pull_request_template.md --> ## Description <!-- Provide a clear description of the changes in this PR --> - Created the `BaseRetriever` class to unify all the retrievers and searches. - Implemented seven specialized retrievers (summaries, chunks, completions, graph, graph-summary, insights, code) with consistent get_context/get_completion interfaces. - Added json context dumping feature in the current completion implementations to enable context comparisons. - Built a comparison framework to validate old vs new implementations. ## DCO Affirmation I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin <!-- This is an auto-generated comment: release notes by coderabbit.ai --> ## Summary by CodeRabbit - **New Features** - Introduced multiple retrieval classes for enhanced search capabilities, including `BaseRetriever`, `ChunksRetriever`, `CodeRetriever`, `CompletionRetriever`, `GraphCompletionRetriever`, `GraphSummaryCompletionRetriever`, `InsightsRetriever`, and `SummariesRetriever`. - Enhanced query completions with optional context saving for improved data persistence. - Implemented advanced tools to compare retrieval outcomes across different implementations. - **Refactor** - Streamlined internal module organization and updated references for increased maintainability and consistency. - Added comments indicating future maintenance tasks related to code merging. <!-- end of auto-generated comment: release notes by coderabbit.ai --> --------- Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
169 lines
5.2 KiB
Python
169 lines
5.2 KiB
Python
import argparse
|
|
import json
|
|
import subprocess
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
from swebench.harness.utils import load_swebench_dataset
|
|
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
|
|
|
|
from cognee.api.v1.cognify.code_graph_pipeline import run_code_graph_pipeline
|
|
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
|
from cognee.infrastructure.llm.prompts import read_query_prompt
|
|
from cognee.modules.retrieval.utils.description_to_codepart_search import (
|
|
code_description_to_code_part_search,
|
|
)
|
|
from evals.eval_utils import download_github_repo
|
|
|
|
|
|
def check_install_package(package_name):
|
|
"""
|
|
Check if a pip package is installed and install it if not.
|
|
Returns True if package is/was installed successfully, False otherwise.
|
|
"""
|
|
try:
|
|
__import__(package_name)
|
|
return True
|
|
except ImportError:
|
|
try:
|
|
subprocess.check_call([sys.executable, "-m", "pip", "install", package_name])
|
|
return True
|
|
except subprocess.CalledProcessError:
|
|
return False
|
|
|
|
|
|
async def generate_patch_with_cognee(instance):
|
|
import os
|
|
from cognee import config
|
|
|
|
file_path = Path(__file__).parent
|
|
data_directory_path = str(Path(os.path.join(file_path, ".data_storage/code_graph")).resolve())
|
|
|
|
config.data_root_directory(data_directory_path)
|
|
config.system_root_directory(data_directory_path)
|
|
|
|
repo_path = download_github_repo(instance, "../RAW_GIT_REPOS")
|
|
include_docs = True
|
|
problem_statement = instance["problem_statement"]
|
|
instructions = read_query_prompt("patch_gen_kg_instructions.txt")
|
|
|
|
async for result in run_code_graph_pipeline(repo_path, include_docs=include_docs):
|
|
print(result)
|
|
|
|
retrieved_codeparts, context_from_documents = await code_description_to_code_part_search(
|
|
problem_statement, include_docs=include_docs
|
|
)
|
|
|
|
context = ""
|
|
for code_piece in retrieved_codeparts:
|
|
context = context + code_piece.get_attribute("source_code")
|
|
|
|
if include_docs:
|
|
context = context_from_documents + context
|
|
|
|
prompt = "\n".join(
|
|
[
|
|
problem_statement,
|
|
"<patch>",
|
|
PATCH_EXAMPLE,
|
|
"</patch>",
|
|
"This is the additional context to solve the problem (description from documentation together with codeparts):",
|
|
context,
|
|
]
|
|
)
|
|
|
|
llm_client = get_llm_client()
|
|
answer_prediction = await llm_client.acreate_structured_output(
|
|
text_input=prompt,
|
|
system_prompt=instructions,
|
|
response_model=str,
|
|
)
|
|
|
|
return answer_prediction
|
|
|
|
|
|
async def generate_patch_without_cognee(instance, llm_client):
|
|
instructions = read_query_prompt("patch_gen_instructions.txt")
|
|
|
|
answer_prediction = await llm_client.acreate_structured_output(
|
|
text_input=instance["text"],
|
|
system_prompt=instructions,
|
|
response_model=str,
|
|
)
|
|
return answer_prediction
|
|
|
|
|
|
async def get_preds(dataset, with_cognee=True):
|
|
if with_cognee:
|
|
model_name = "with_cognee"
|
|
pred_func = generate_patch_with_cognee
|
|
else:
|
|
model_name = "without_cognee"
|
|
pred_func = generate_patch_without_cognee
|
|
|
|
preds = []
|
|
|
|
for instance in dataset:
|
|
instance_id = instance["instance_id"]
|
|
model_patch = await pred_func(instance) # Sequentially await the async function
|
|
preds.append(
|
|
{
|
|
"instance_id": instance_id,
|
|
"model_patch": model_patch,
|
|
"model_name_or_path": model_name,
|
|
}
|
|
)
|
|
|
|
return preds
|
|
|
|
|
|
async def main():
|
|
parser = argparse.ArgumentParser(description="Run LLM predictions on SWE-bench dataset")
|
|
parser.add_argument("--cognee_off", action="store_true")
|
|
parser.add_argument("--max_workers", type=int, required=True)
|
|
args = parser.parse_args()
|
|
|
|
for dependency in ["transformers", "sentencepiece", "swebench"]:
|
|
check_install_package(dependency)
|
|
|
|
if args.cognee_off:
|
|
dataset_name = "princeton-nlp/SWE-bench_Lite_bm25_13K"
|
|
dataset = load_swebench_dataset(dataset_name, split="test")
|
|
predictions_path = "preds_nocognee.json"
|
|
if not Path(predictions_path).exists():
|
|
preds = await get_preds(dataset, with_cognee=False)
|
|
with open(predictions_path, "w") as file:
|
|
json.dump(preds, file)
|
|
else:
|
|
dataset_name = "princeton-nlp/SWE-bench_Lite"
|
|
swe_dataset = load_swebench_dataset(dataset_name, split="test")[:1]
|
|
predictions_path = "preds.json"
|
|
preds = await get_preds(swe_dataset, with_cognee=not args.cognee_off)
|
|
with open(predictions_path, "w") as file:
|
|
json.dump(preds, file)
|
|
|
|
""" This part is for the evaluation
|
|
subprocess.run(
|
|
[
|
|
"python",
|
|
"-m",
|
|
"swebench.harness.run_evaluation",
|
|
"--dataset_name",
|
|
dataset_name,
|
|
"--split",
|
|
"test",
|
|
"--predictions_path",
|
|
predictions_path,
|
|
"--max_workers",
|
|
str(args.max_workers),
|
|
"--run_id",
|
|
"test_run",
|
|
]
|
|
)
|
|
"""
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import asyncio
|
|
|
|
asyncio.run(main(), debug=True)
|