cognee/evals/eval_framework/eval_config.py
lxobr bb8cb692e0
Cog 1293 corpus builder custom cognify tasks (#527)
<!-- .github/pull_request_template.md -->

## Description
- Enable custom tasks in corpus building
## DCO Affirmation
I affirm that all code in every commit of this pull request conforms to
the terms of the Topoteretes Developer Certificate of Origin


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced a configurable option to specify the task retrieval
strategy during corpus building.
- Enhanced the workflow with integrated task fetching, featuring a
default retrieval mechanism.
- Updated evaluation configuration to support customizable task
selection for more flexible operations.
- Added a new abstract base class for defining various task retrieval
strategies.
- Introduced a new enumeration to map task getter types to their
corresponding classes.
  
- **Dependencies**
  - Added a new dependency for downloading files from Google Drive.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-02-12 16:44:08 +01:00

58 lines
2 KiB
Python

from functools import lru_cache
from pydantic_settings import BaseSettings, SettingsConfigDict
from typing import List
class EvalConfig(BaseSettings):
# Corpus builder params
building_corpus_from_scratch: bool = True
number_of_samples_in_corpus: int = 1
benchmark: str = "Dummy" # Options: 'HotPotQA', 'Dummy', 'TwoWikiMultiHop'
task_getter_type: str = "Default"
# Question answering params
answering_questions: bool = True
qa_engine: str = (
"cognee_completion" # Options: 'cognee_completion' or 'cognee_graph_completion'
)
# Evaluation params
evaluating_answers: bool = True
evaluation_engine: str = "DeepEval"
evaluation_metrics: List[str] = ["correctness", "EM", "f1"]
deepeval_model: str = "gpt-4o-mini"
# Visualization
dashboard: bool = True
# file paths
questions_path: str = "questions_output.json"
answers_path: str = "answers_output.json"
metrics_path: str = "metrics_output.json"
dashboard_path: str = "dashboard.html"
model_config = SettingsConfigDict(env_file=".env", extra="allow")
def to_dict(self) -> dict:
return {
"building_corpus_from_scratch": self.building_corpus_from_scratch,
"number_of_samples_in_corpus": self.number_of_samples_in_corpus,
"benchmark": self.benchmark,
"answering_questions": self.answering_questions,
"qa_engine": self.qa_engine,
"evaluating_answers": self.evaluating_answers,
"evaluation_engine": self.evaluation_engine,
"evaluation_metrics": self.evaluation_metrics,
"dashboard": self.dashboard,
"questions_path": self.questions_path,
"answers_path": self.answers_path,
"metrics_path": self.metrics_path,
"dashboard_path": self.dashboard_path,
"deepeval_model": self.deepeval_model,
"task_getter_type": self.task_getter_type,
}
@lru_cache
def get_llm_config():
return EvalConfig()