cognee/cognee/infrastructure/databases/vector/create_vector_engine.py
Hande 995e7aa483
fix: update unsupported vector db log (#1708)
<!-- .github/pull_request_template.md -->

## Description
<!--
Please provide a clear, human-generated description of the changes in
this PR.
DO NOT use AI-generated descriptions. We want to understand your thought
process and reasoning.
-->

## Type of Change
<!-- Please check the relevant option -->
- [ ] Bug fix (non-breaking change that fixes an issue)
- [ ] New feature (non-breaking change that adds functionality)
- [ ] Breaking change (fix or feature that would cause existing
functionality to change)
- [ ] Documentation update
- [ ] Code refactoring
- [ ] Performance improvement
- [ ] Other (please specify):

## Screenshots/Videos (if applicable)
<!-- Add screenshots or videos to help explain your changes -->

## Pre-submission Checklist
<!-- Please check all boxes that apply before submitting your PR -->
- [ ] **I have tested my changes thoroughly before submitting this PR**
- [ ] **This PR contains minimal changes necessary to address the
issue/feature**
- [ ] My code follows the project's coding standards and style
guidelines
- [ ] I have added tests that prove my fix is effective or that my
feature works
- [ ] I have added necessary documentation (if applicable)
- [ ] All new and existing tests pass
- [ ] I have searched existing PRs to ensure this change hasn't been
submitted already
- [ ] I have linked any relevant issues in the description
- [ ] My commits have clear and descriptive messages

## DCO Affirmation
I affirm that all code in every commit of this pull request conforms to
the terms of the Topoteretes Developer Certificate of Origin.
2025-10-30 17:38:28 +01:00

138 lines
4.8 KiB
Python

from .supported_databases import supported_databases
from .embeddings import get_embedding_engine
from functools import lru_cache
@lru_cache
def create_vector_engine(
vector_db_provider: str,
vector_db_url: str,
vector_db_port: str = "",
vector_db_key: str = "",
):
"""
Create a vector database engine based on the specified provider.
This function initializes and returns a database adapter for vector storage, depending
on the provided vector database provider. The function checks for required credentials
for each provider, raising an EnvironmentError if any are missing, or ImportError if the
ChromaDB package is not installed.
Supported providers include: pgvector, ChromaDB, and LanceDB.
Parameters:
-----------
- vector_db_url (str): The URL for the vector database instance.
- vector_db_port (str): The port for the vector database instance. Required for some
providers.
- vector_db_key (str): The API key or access token for the vector database instance.
- vector_db_provider (str): The name of the vector database provider to use (e.g.,
'pgvector').
Returns:
--------
An instance of the corresponding database adapter class for the specified provider.
"""
embedding_engine = get_embedding_engine()
if vector_db_provider in supported_databases:
adapter = supported_databases[vector_db_provider]
return adapter(
url=vector_db_url,
api_key=vector_db_key,
embedding_engine=embedding_engine,
)
if vector_db_provider.lower() == "pgvector":
from cognee.infrastructure.databases.relational import get_relational_config
# Get configuration for postgres database
relational_config = get_relational_config()
db_username = relational_config.db_username
db_password = relational_config.db_password
db_host = relational_config.db_host
db_port = relational_config.db_port
db_name = relational_config.db_name
if not (db_host and db_port and db_name and db_username and db_password):
raise EnvironmentError("Missing requred pgvector credentials!")
connection_string: str = (
f"postgresql+asyncpg://{db_username}:{db_password}@{db_host}:{db_port}/{db_name}"
)
try:
from .pgvector.PGVectorAdapter import PGVectorAdapter
except ImportError:
raise ImportError(
"PostgreSQL dependencies are not installed. Please install with 'pip install cognee\"[postgres]\"' or 'pip install cognee\"[postgres-binary]\"' to use PGVector functionality."
)
return PGVectorAdapter(
connection_string,
vector_db_key,
embedding_engine,
)
elif vector_db_provider.lower() == "chromadb":
try:
import chromadb
except ImportError:
raise ImportError(
"ChromaDB is not installed. Please install it with 'pip install chromadb'"
)
from .chromadb.ChromaDBAdapter import ChromaDBAdapter
return ChromaDBAdapter(
url=vector_db_url,
api_key=vector_db_key,
embedding_engine=embedding_engine,
)
elif vector_db_provider.lower() == "neptune_analytics":
try:
from langchain_aws import NeptuneAnalyticsGraph
except ImportError:
raise ImportError(
"langchain_aws is not installed. Please install it with 'pip install langchain_aws'"
)
if not vector_db_url:
raise EnvironmentError("Missing Neptune endpoint.")
from cognee.infrastructure.databases.hybrid.neptune_analytics.NeptuneAnalyticsAdapter import (
NeptuneAnalyticsAdapter,
NEPTUNE_ANALYTICS_ENDPOINT_URL,
)
if not vector_db_url.startswith(NEPTUNE_ANALYTICS_ENDPOINT_URL):
raise ValueError(
f"Neptune endpoint must have the format '{NEPTUNE_ANALYTICS_ENDPOINT_URL}<GRAPH_ID>'"
)
graph_identifier = vector_db_url.replace(NEPTUNE_ANALYTICS_ENDPOINT_URL, "")
return NeptuneAnalyticsAdapter(
graph_id=graph_identifier,
embedding_engine=embedding_engine,
)
elif vector_db_provider.lower() == "lancedb":
from .lancedb.LanceDBAdapter import LanceDBAdapter
return LanceDBAdapter(
url=vector_db_url,
api_key=vector_db_key,
embedding_engine=embedding_engine,
)
else:
raise EnvironmentError(
f"Unsupported vector database provider: {vector_db_provider}. "
f"Supported providers are: {', '.join(list(supported_databases.keys()) + ['LanceDB', 'PGVector', 'neptune_analytics', 'ChromaDB'])}"
)