cognee/.github/workflows/reusable_notebook.yml
2025-08-15 09:48:23 +01:00

68 lines
1.9 KiB
YAML

name: test-notebook
on:
workflow_call:
inputs:
notebook-location:
description: "Location of Jupyter notebook to run"
required: true
type: string
secrets:
#LLM_MODEL:
# required: true
#LLM_ENDPOINT:
# required: true
LLM_API_KEY:
required: true
OPENAI_API_KEY:
required: true
#LLM_API_VERSION:
# required: true
EMBEDDING_MODEL:
required: true
EMBEDDING_ENDPOINT:
required: true
EMBEDDING_API_KEY:
required: true
EMBEDDING_API_VERSION:
required: true
env:
RUNTIME__LOG_LEVEL: ERROR
jobs:
run_notebook_test:
name: test
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
steps:
- name: Check out
uses: actions/checkout@master
- name: Cognee Setup
uses: ./.github/actions/cognee_setup
with:
python-version: ${{ inputs.python-version }}
extra-dependencies: "notebook"
- name: Execute Jupyter Notebook
env:
ENV: 'dev'
#LLM_MODEL: ${{ secrets.LLM_MODEL }}
#LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }}
LLM_API_KEY: ${{ secrets.OPENAI_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} # Use OpenAI Until a multimedia model is deployed and DeepEval support for other models is added
#LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }}
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
run: |
uv run jupyter nbconvert \
--to notebook \
--execute ${{ inputs.notebook-location }} \
--output executed_notebook.ipynb \
--ExecutePreprocessor.timeout=1200