<!-- .github/pull_request_template.md --> ## Description <!-- Provide a clear description of the changes in this PR --> ## DCO Affirmation I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin. --------- Co-authored-by: Boris <boris@topoteretes.com> Co-authored-by: Vasilije <8619304+Vasilije1990@users.noreply.github.com>
94 lines
3.4 KiB
Python
94 lines
3.4 KiB
Python
import os
|
|
import pathlib
|
|
import asyncio
|
|
import cognee
|
|
from cognee.modules.search.types import SearchType
|
|
|
|
|
|
async def main():
|
|
"""
|
|
Example script demonstrating how to use Cognee with Neo4j
|
|
|
|
This example:
|
|
1. Configures Cognee to use Neo4j as graph database
|
|
2. Sets up data directories
|
|
3. Adds sample data to Cognee
|
|
4. Processes (cognifies) the data
|
|
5. Performs different types of searches
|
|
"""
|
|
|
|
# Set up Neo4j credentials in .env file and get the values from environment variables
|
|
neo4j_url = os.getenv("GRAPH_DATABASE_URL")
|
|
neo4j_user = os.getenv("GRAPH_DATABASE_USERNAME")
|
|
neo4j_pass = os.getenv("GRAPH_DATABASE_PASSWORD")
|
|
|
|
# Configure Neo4j as the graph database provider
|
|
cognee.config.set_graph_db_config(
|
|
{
|
|
"graph_database_url": neo4j_url, # Neo4j Bolt URL
|
|
"graph_database_provider": "neo4j", # Specify Neo4j as provider
|
|
"graph_database_username": neo4j_user, # Neo4j username
|
|
"graph_database_password": neo4j_pass, # Neo4j password
|
|
}
|
|
)
|
|
|
|
# Set up data directories for storing documents and system files
|
|
# You should adjust these paths to your needs
|
|
current_dir = pathlib.Path(__file__).parent
|
|
data_directory_path = str(current_dir / "data_storage")
|
|
cognee.config.data_root_directory(data_directory_path)
|
|
|
|
cognee_directory_path = str(current_dir / "cognee_system")
|
|
cognee.config.system_root_directory(cognee_directory_path)
|
|
|
|
# Clean any existing data (optional)
|
|
await cognee.prune.prune_data()
|
|
await cognee.prune.prune_system(metadata=True)
|
|
|
|
# Create a dataset
|
|
dataset_name = "neo4j_example"
|
|
|
|
# Add sample text to the dataset
|
|
sample_text = """Neo4j is a graph database management system.
|
|
It stores data in nodes and relationships rather than tables as in traditional relational databases.
|
|
Neo4j provides a powerful query language called Cypher for graph traversal and analysis.
|
|
It now supports vector indexing for similarity search with the vector index plugin.
|
|
Neo4j allows embedding generation and vector search to be combined with graph operations.
|
|
Applications can use Neo4j to connect vector search with graph context for more meaningful results."""
|
|
|
|
# Add the sample text to the dataset
|
|
await cognee.add([sample_text], dataset_name)
|
|
|
|
# Process the added document to extract knowledge
|
|
await cognee.cognify([dataset_name])
|
|
|
|
# Now let's perform some searches
|
|
# 1. Search for insights related to "Neo4j"
|
|
insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="Neo4j")
|
|
print("\nInsights about Neo4j:")
|
|
for result in insights_results:
|
|
print(f"- {result}")
|
|
|
|
# 2. Search for text chunks related to "graph database"
|
|
chunks_results = await cognee.search(
|
|
query_type=SearchType.CHUNKS, query_text="graph database", datasets=[dataset_name]
|
|
)
|
|
print("\nChunks about graph database:")
|
|
for result in chunks_results:
|
|
print(f"- {result}")
|
|
|
|
# 3. Get graph completion related to databases
|
|
graph_completion_results = await cognee.search(
|
|
query_type=SearchType.GRAPH_COMPLETION, query_text="database"
|
|
)
|
|
print("\nGraph completion for databases:")
|
|
for result in graph_completion_results:
|
|
print(f"- {result}")
|
|
|
|
# Clean up (optional)
|
|
# await cognee.prune.prune_data()
|
|
# await cognee.prune.prune_system(metadata=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main())
|