No description
Find a file
2025-10-02 09:54:30 +02:00
.github docs: Multi user authorization example (#1466) 2025-09-29 20:15:50 +02:00
alembic chore: Update MCP version 2025-09-11 23:41:24 +02:00
assets chore: update cognee ui on readme 2025-09-11 11:05:18 +02:00
bin Revert "Clean up core cognee repo" 2025-05-15 10:46:01 +02:00
cognee test: Rollback pgvector test. Was failing for some reason. 2025-10-02 09:54:30 +02:00
cognee-frontend Merge branch 'dev' into feature/windows-compatibility-fixes 2025-09-29 20:51:17 +02:00
cognee-mcp Merge branch 'dev' into merge-main-vol6 2025-09-28 15:29:23 +02:00
cognee-starter-kit improve structure, readability 2025-09-04 16:20:36 +02:00
deployment Fix/add async lock to all vector databases (#1244) 2025-08-14 15:57:34 +02:00
distributed chore(deps): bump the pip group across 2 directories with 1 update 2025-08-27 21:49:40 +00:00
evals renamed max tokens 2025-08-17 12:39:51 +02:00
examples docs: Multi user authorization example (#1466) 2025-09-29 20:15:50 +02:00
licenses Revert "Clean up core cognee repo" 2025-05-15 10:46:01 +02:00
logs feat: Add logging to file [COG-1715] (#672) 2025-03-28 16:13:56 +01:00
notebooks feat: add new tutorial notebook 2025-09-24 16:14:28 +02:00
tools Revert "Clean up core cognee repo" 2025-05-15 10:46:01 +02:00
.dockerignore Revert "Clean up core cognee repo" 2025-05-15 10:46:01 +02:00
.env.template Aws session token support - MSR97 (#1364) 2025-09-28 15:28:27 +02:00
.gitattributes Merge dev with main (#921) 2025-06-07 07:48:47 -07:00
.gitguardian.yml fix: Mcp improvements (#1114) 2025-07-24 21:52:16 +02:00
.gitignore feat: add welcome tutorial notebook for new users (#1425) 2025-09-18 18:07:05 +02:00
.pre-commit-config.yaml Feat: log pipeline status and pass it through pipeline [COG-1214] (#501) 2025-02-11 16:41:40 +01:00
.pylintrc
alembic.ini fix: Logger suppresion and database logs (#1041) 2025-07-03 20:08:27 +02:00
CODE_OF_CONDUCT.md Update CODE_OF_CONDUCT.md 2024-12-13 11:30:16 +01:00
CONTRIBUTING.md Merge main vol 4 (#1200) 2025-08-05 12:48:24 +02:00
CONTRIBUTORS.md Merge with main (#892) 2025-05-30 23:13:04 +02:00
DCO.md Create DCO.md 2024-12-13 11:28:44 +01:00
docker-compose.yml Merge main vol 4 (#1200) 2025-08-05 12:48:24 +02:00
Dockerfile Fix/add async lock to all vector databases (#1244) 2025-08-14 15:57:34 +02:00
entrypoint.sh Regen lock files (#1153) 2025-07-25 11:45:28 -04:00
LICENSE
mypy.ini fix: Remove weaviate (#1139) 2025-07-23 19:34:35 +02:00
NOTICE.md
poetry.lock Merge branch 'dev' into feat/add-pdfproloader 2025-09-30 17:08:28 +08:00
pyproject.toml Merge branch 'dev' into feat/add-pdfproloader 2025-09-30 17:08:28 +08:00
README.md fix: Update README.md to change the URL issue of hosted solution 2025-09-27 12:11:31 +05:30
SECURITY.md Merge main vol 2 (#967) 2025-06-11 09:28:41 -04:00
uv.lock Merge branch 'dev' into feat/add-pdfproloader 2025-09-30 17:08:28 +08:00

Cognee Logo

cognee - Memory for AI Agents in 6 lines of code

Demo . Learn more · Join Discord · Join r/AIMemory . Docs . cognee community repo

GitHub forks GitHub stars GitHub commits Github tag Downloads License Contributors Sponsor

cognee - Memory for AI Agents  in 5 lines of code | Product Hunt topoteretes%2Fcognee | Trendshift

Build dynamic memory for Agents and replace RAG using scalable, modular ECL (Extract, Cognify, Load) pipelines.

🌐 Available Languages : Deutsch | Español | français | 日本語 | 한국어 | Português | Русский | 中文

Why cognee?

Get Started

Get started quickly with a Google Colab notebook , Deepnote notebook or starter repo

About cognee

Self-hosted package:

  • Interconnects any kind of documents: past conversations, files, images, and audio transcriptions
  • Replaces RAG systems with a memory layer based on graphs and vectors
  • Reduces developer effort and cost, while increasing quality and precision
  • Provides Pythonic data pipelines that manage data ingestion from 30+ data sources
  • Is highly customizable with custom tasks, pipelines, and a set of built-in search endpoints

Hosted platform:

Self-Hosted (Open Source)

📦 Installation

You can install Cognee using either pip, poetry, uv or any other python package manager.

Cognee supports Python 3.10 to 3.12

With uv

uv pip install cognee

Detailed instructions can be found in our docs

💻 Basic Usage

Setup

import os
os.environ["LLM_API_KEY"] = "YOUR OPENAI_API_KEY"

You can also set the variables by creating .env file, using our template. To use different LLM providers, for more info check out our documentation

Simple example

Python

This script will run the default pipeline:

import cognee
import asyncio


async def main():
    # Add text to cognee
    await cognee.add("Cognee turns documents into AI memory.")

    # Generate the knowledge graph
    await cognee.cognify()

    # Add memory algorithms to the graph
    await cognee.memify()

    # Query the knowledge graph
    results = await cognee.search("What does cognee do?")

    # Display the results
    for result in results:
        print(result)


if __name__ == '__main__':
    asyncio.run(main())

Example output:

  Cognee turns documents into AI memory.

Via CLI

Let's get the basics covered

cognee-cli add "Cognee turns documents into AI memory."

cognee-cli cognify

cognee-cli search "What does cognee do?"
cognee-cli delete --all

or run

cognee-cli -ui

Hosted Platform

Get up and running in minutes with automatic updates, analytics, and enterprise security.

  1. Sign up on cogwit
  2. Add your API key to local UI and sync your data to Cogwit

Demos

  1. Cogwit Beta demo:

Cogwit Beta

  1. Simple GraphRAG demo

Simple GraphRAG demo

  1. cognee with Ollama

cognee with local models

Contributing

Your contributions are at the core of making this a true open source project. Any contributions you make are greatly appreciated. See CONTRIBUTING.md for more information.

Code of Conduct

We are committed to making open source an enjoyable and respectful experience for our community. See CODE_OF_CONDUCT for more information.

Citation

We now have a paper you can cite:

@misc{markovic2025optimizinginterfaceknowledgegraphs,
      title={Optimizing the Interface Between Knowledge Graphs and LLMs for Complex Reasoning}, 
      author={Vasilije Markovic and Lazar Obradovic and Laszlo Hajdu and Jovan Pavlovic},
      year={2025},
      eprint={2505.24478},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2505.24478}, 
}