cognee/cognitive_architecture/classifiers/classify_user_input.py
2024-02-22 14:09:16 +01:00

52 lines
1.9 KiB
Python

""" This module contains the classifiers for the documents. """
import json
import logging
from langchain.prompts import ChatPromptTemplate
from langchain.chains import create_extraction_chain
from langchain.chat_models import ChatOpenAI
from ..config import Config
config = Config()
config.load()
OPENAI_API_KEY = config.openai_key
async def classify_user_input(query, input_type):
""" Classify the user input based on the query and input type."""
llm = ChatOpenAI(temperature=0, model=config.model)
prompt_classify = ChatPromptTemplate.from_template(
"""You are a classifier.
Determine with a True or False if the following input: {query},
is relevant for the following memory category: {input_type}"""
)
json_structure = [
{
"name": "classifier",
"description": "Classification",
"parameters": {
"type": "object",
"properties": {
"InputClassification": {
"type": "boolean",
"description": "The classification of the input",
}
},
"required": ["InputClassification"],
},
}
]
chain_filter = prompt_classify | llm.bind(
function_call={"name": "classifier"}, functions=json_structure
)
classifier_output = await chain_filter.ainvoke(
{"query": query, "input_type": input_type}
)
arguments_str = classifier_output.additional_kwargs["function_call"]["arguments"]
logging.info("This is the arguments string %s", arguments_str)
arguments_dict = json.loads(arguments_str)
logging.info("Relevant summary is %s", arguments_dict.get("DocumentSummary", None))
InputClassification = arguments_dict.get("InputClassification", None)
logging.info("This is the classification %s", InputClassification)
return InputClassification