65 lines
2.5 KiB
Python
65 lines
2.5 KiB
Python
""" This module contains the classifiers for the documents. """
|
|
|
|
import json
|
|
import logging
|
|
|
|
from langchain.prompts import ChatPromptTemplate
|
|
from langchain.document_loaders import TextLoader
|
|
from langchain.document_loaders import DirectoryLoader
|
|
from langchain.chains import create_extraction_chain
|
|
from langchain.chat_models import ChatOpenAI
|
|
|
|
from ..config import Config
|
|
|
|
config = Config()
|
|
config.load()
|
|
OPENAI_API_KEY = config.openai_key
|
|
|
|
async def classify_documents(query: str, document_id: str, content: str):
|
|
"""Classify the documents based on the query and content."""
|
|
document_context = content
|
|
logging.info("This is the document context %s", document_context)
|
|
|
|
llm = ChatOpenAI(temperature=0, model=config.model)
|
|
prompt_classify = ChatPromptTemplate.from_template(
|
|
"""You are a summarizer and classifier.
|
|
Determine what book this is and where does it belong in the output :
|
|
{query}, Id: {d_id} Document context is: {context}"""
|
|
)
|
|
json_structure = [
|
|
{
|
|
"name": "summarizer",
|
|
"description": "Summarization and classification",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"DocumentCategory": {
|
|
"type": "string",
|
|
"description": "The classification of documents "
|
|
"in groups such as legal, medical, etc.",
|
|
},
|
|
"Title": {
|
|
"type": "string",
|
|
"description": "The title of the document",
|
|
},
|
|
"Summary": {
|
|
"type": "string",
|
|
"description": "The summary of the document",
|
|
},
|
|
"d_id": {"type": "string", "description": "The id of the document"},
|
|
},
|
|
"required": ["DocumentCategory", "Title", "Summary", "d_id"],
|
|
},
|
|
}
|
|
]
|
|
chain_filter = prompt_classify | llm.bind(
|
|
function_call={"name": "summarizer"}, functions=json_structure
|
|
)
|
|
classifier_output = await chain_filter.ainvoke(
|
|
{"query": query, "d_id": document_id, "context": str(document_context)}
|
|
)
|
|
|
|
arguments_str = classifier_output.additional_kwargs["function_call"]["arguments"]
|
|
logging.info("This is the arguments string %s", arguments_str)
|
|
arguments_dict = json.loads(arguments_str)
|
|
return arguments_dict
|