56 lines
1.6 KiB
Python
56 lines
1.6 KiB
Python
import os
|
|
import asyncio
|
|
import pathlib
|
|
import logging
|
|
|
|
import cognee
|
|
from cognee.api.v1.search import SearchType
|
|
from cognee.shared.utils import setup_logging
|
|
|
|
# Prerequisites:
|
|
# 1. Copy `.env.template` and rename it to `.env`.
|
|
# 2. Add your OpenAI API key to the `.env` file in the `LLM_API_KEY` field:
|
|
# LLM_API_KEY = "your_key_here"
|
|
|
|
|
|
async def main():
|
|
# Create a clean slate for cognee -- reset data and system state
|
|
await cognee.prune.prune_data()
|
|
await cognee.prune.prune_system(metadata=True)
|
|
|
|
# cognee knowledge graph will be created based on the text
|
|
# and description of these files
|
|
mp3_file_path = os.path.join(
|
|
pathlib.Path(__file__).parent.parent.parent,
|
|
".data/multimedia/text_to_speech.mp3",
|
|
)
|
|
png_file_path = os.path.join(
|
|
pathlib.Path(__file__).parent.parent.parent,
|
|
".data/multimedia/example.png",
|
|
)
|
|
|
|
# Add the files, and make it available for cognify
|
|
await cognee.add([mp3_file_path, png_file_path])
|
|
|
|
# Use LLMs and cognee to create knowledge graph
|
|
await cognee.cognify()
|
|
|
|
# Query cognee for summaries of the data in the multimedia files
|
|
search_results = await cognee.search(
|
|
SearchType.SUMMARIES,
|
|
query_text="What is in the multimedia files?",
|
|
)
|
|
|
|
# Display search results
|
|
for result_text in search_results:
|
|
print(result_text)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
setup_logging(logging.ERROR)
|
|
loop = asyncio.new_event_loop()
|
|
asyncio.set_event_loop(loop)
|
|
try:
|
|
loop.run_until_complete(main)
|
|
finally:
|
|
loop.run_until_complete(loop.shutdown_asyncgens())
|