cognee/cognee/modules/graph/cognee_graph/CogneeGraphElements.py
hajdul88 508165e883
feature: Introduces wide subgraph search in graph completion and improves QA speed (#1736)
<!-- .github/pull_request_template.md -->

This PR introduces wide vector and graph structure filtering
capabilities. With these changes, the graph completion retriever and all
retrievers that inherit from it will now filter relevant vector elements
and subgraphs based on the query. This improvement significantly
increases search speed for large graphs while maintaining—and in some
cases slightly improving—accuracy.

Changes in This PR:

-Introduced new wide_search_top_k parameter: Controls the initial search
space size

-Added graph adapter level filtering method: Enables relevant subgraph
filtering while maintaining backward compatibility. For community or
custom graph adapters that don't implement this method, the system
gracefully falls back to the original search behavior.

-Updated modal dashboard and evaluation framework: Fixed compatibility
issues.
Added comprehensive unit tests: Introduced unit tests for
brute_force_triplet_search (previously untested) and expanded the
CogneeGraph test suite.

Integration tests: Existing integration tests verify end-to-end search
functionality (no changes required).

Acceptance Criteria and Testing

To verify the new search behavior, run search queries with different
wide_search_top_k parameters while logging is enabled:
None: Triggers a full graph search (default behavior)
1: Projects a minimal subgraph (demonstrates maximum filtering)
Custom values: Test intermediate levels of filtering

Internal Testing and results:
Performance and accuracy benchmarks are available upon request. The
implementation demonstrates measurable improvements in query latency for
large graphs without sacrificing result quality.

## Type of Change
<!-- Please check the relevant option -->
- [ ] Bug fix (non-breaking change that fixes an issue)
- [ ] New feature (non-breaking change that adds functionality)
- [ ] Breaking change (fix or feature that would cause existing
functionality to change)
- [ ] Documentation update
- [x] Code refactoring
- [x] Performance improvement
- [ ] Other (please specify):

## Screenshots/Videos (if applicable)
None

## Pre-submission Checklist
<!-- Please check all boxes that apply before submitting your PR -->
- [x] **I have tested my changes thoroughly before submitting this PR**
- [x] **This PR contains minimal changes necessary to address the
issue/feature**
- [x] My code follows the project's coding standards and style
guidelines
- [x] I have added tests that prove my fix is effective or that my
feature works
- [x] I have added necessary documentation (if applicable)
- [x] All new and existing tests pass
- [x] I have searched existing PRs to ensure this change hasn't been
submitted already
- [x] I have linked any relevant issues in the description
- [x] My commits have clear and descriptive messages

## DCO Affirmation
I affirm that all code in every commit of this pull request conforms to
the terms of the Topoteretes Developer Certificate of Origin.

---------

Co-authored-by: Pavel Zorin <pazonec@yandex.ru>
2025-11-26 15:18:53 +01:00

156 lines
5.3 KiB
Python

import numpy as np
from typing import List, Dict, Optional, Any, Union
from cognee.modules.graph.exceptions import InvalidDimensionsError, DimensionOutOfRangeError
class Node:
"""
Represents a node in a graph.
Attributes:
id (str): A unique identifier for the node.
attributes (Dict[str, Any]): A dictionary of attributes associated with the node.
neighbors (List[Node]): Represents the original nodes
skeleton_edges (List[Edge]): Represents the original edges
"""
id: str
attributes: Dict[str, Any]
skeleton_neighbours: List["Node"]
skeleton_edges: List["Edge"]
status: np.ndarray
def __init__(
self,
node_id: str,
attributes: Optional[Dict[str, Any]] = None,
dimension: int = 1,
node_penalty: float = 3.5,
):
if dimension <= 0:
raise InvalidDimensionsError()
self.id = node_id
self.attributes = attributes if attributes is not None else {}
self.attributes["vector_distance"] = node_penalty
self.skeleton_neighbours = []
self.skeleton_edges = []
self.status = np.ones(dimension, dtype=int)
def add_skeleton_neighbor(self, neighbor: "Node") -> None:
if neighbor not in self.skeleton_neighbours:
self.skeleton_neighbours.append(neighbor)
def remove_skeleton_neighbor(self, neighbor: "Node") -> None:
if neighbor in self.skeleton_neighbours:
self.skeleton_neighbours.remove(neighbor)
def add_skeleton_edge(self, edge: "Edge") -> None:
self.skeleton_edges.append(edge)
# Add neighbor
if edge.node1 == self:
self.add_skeleton_neighbor(edge.node2)
elif edge.node2 == self:
self.add_skeleton_neighbor(edge.node1)
def remove_skeleton_edge(self, edge: "Edge") -> None:
if edge in self.skeleton_edges:
self.skeleton_edges.remove(edge)
# Remove neighbor if no other edge connects them
neighbor = edge.node2 if edge.node1 == self else edge.node1
if all(e.node1 != neighbor and e.node2 != neighbor for e in self.skeleton_edges):
self.remove_skeleton_neighbor(neighbor)
def is_node_alive_in_dimension(self, dimension: int) -> bool:
if dimension < 0 or dimension >= len(self.status):
raise DimensionOutOfRangeError(dimension=dimension, max_index=len(self.status) - 1)
return self.status[dimension] == 1
def add_attribute(self, key: str, value: Any) -> None:
self.attributes[key] = value
def get_attribute(self, key: str) -> Union[str, int, float]:
return self.attributes[key]
def get_skeleton_edges(self):
return self.skeleton_edges
def get_skeleton_neighbours(self):
return self.skeleton_neighbours
def __repr__(self) -> str:
return f"Node({self.id}, attributes={self.attributes})"
def __hash__(self) -> int:
return hash(self.id)
def __eq__(self, other: "Node") -> bool:
return isinstance(other, Node) and self.id == other.id
class Edge:
"""
Represents an edge in a graph, connecting two nodes.
Attributes:
node1 (Node): The starting node of the edge.
node2 (Node): The ending node of the edge.
attributes (Dict[str, Any]): A dictionary of attributes associated with the edge.
directed (bool): A flag indicating whether the edge is directed or undirected.
"""
node1: "Node"
node2: "Node"
attributes: Dict[str, Any]
directed: bool
status: np.ndarray
def __init__(
self,
node1: "Node",
node2: "Node",
attributes: Optional[Dict[str, Any]] = None,
directed: bool = True,
dimension: int = 1,
edge_penalty: float = 3.5,
):
if dimension <= 0:
raise InvalidDimensionsError()
self.node1 = node1
self.node2 = node2
self.attributes = attributes if attributes is not None else {}
self.attributes["vector_distance"] = edge_penalty
self.directed = directed
self.status = np.ones(dimension, dtype=int)
def is_edge_alive_in_dimension(self, dimension: int) -> bool:
if dimension < 0 or dimension >= len(self.status):
raise DimensionOutOfRangeError(dimension=dimension, max_index=len(self.status) - 1)
return self.status[dimension] == 1
def add_attribute(self, key: str, value: Any) -> None:
self.attributes[key] = value
def get_attribute(self, key: str) -> Optional[Union[str, int, float]]:
return self.attributes.get(key)
def get_source_node(self):
return self.node1
def get_destination_node(self):
return self.node2
def __repr__(self) -> str:
direction = "->" if self.directed else "--"
return f"Edge({self.node1.id} {direction} {self.node2.id}, attributes={self.attributes})"
def __hash__(self) -> int:
if self.directed:
return hash((self.node1, self.node2))
else:
return hash(frozenset({self.node1, self.node2}))
def __eq__(self, other: "Edge") -> bool:
if not isinstance(other, Edge):
return False
if self.directed:
return self.node1 == other.node1 and self.node2 == other.node2
else:
return {self.node1, self.node2} == {other.node1, other.node2}