<!-- .github/pull_request_template.md --> ## Description <!-- Provide a clear description of the changes in this PR --> ## DCO Affirmation I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin. --------- Co-authored-by: Boris <boris@topoteretes.com> Co-authored-by: Vasilije <8619304+Vasilije1990@users.noreply.github.com>
87 lines
3 KiB
Python
87 lines
3 KiB
Python
import os
|
|
import pathlib
|
|
import asyncio
|
|
import cognee
|
|
from cognee.modules.search.types import SearchType
|
|
|
|
|
|
async def main():
|
|
"""
|
|
Example script demonstrating how to use Cognee with FalkorDB
|
|
|
|
This example:
|
|
1. Configures Cognee to use FalkorDB as graph database
|
|
2. Sets up data directories
|
|
3. Adds sample data to Cognee
|
|
4. Processes (cognifies) the data
|
|
5. Performs different types of searches
|
|
"""
|
|
# Configure FalkorDB as the graph database provider
|
|
cognee.config.set_graph_db_config(
|
|
{
|
|
"graph_database_url": "localhost", # FalkorDB URL (using Redis protocol)
|
|
"graph_database_port": 6379,
|
|
"graph_database_provider": "falkordb",
|
|
}
|
|
)
|
|
|
|
# Set up data directories for storing documents and system files
|
|
# You should adjust these paths to your needs
|
|
current_dir = pathlib.Path(__file__).parent
|
|
data_directory_path = str(current_dir / "data_storage")
|
|
cognee.config.data_root_directory(data_directory_path)
|
|
|
|
cognee_directory_path = str(current_dir / "cognee_system")
|
|
cognee.config.system_root_directory(cognee_directory_path)
|
|
|
|
# Clean any existing data (optional)
|
|
await cognee.prune.prune_data()
|
|
await cognee.prune.prune_system(metadata=True)
|
|
|
|
# Create a dataset
|
|
dataset_name = "falkordb_example"
|
|
|
|
# Add sample text to the dataset
|
|
sample_text = """FalkorDB is a graph database that evolved from RedisGraph.
|
|
It is focused on providing high-performance graph operations.
|
|
FalkorDB uses sparse adjacency matrices to represent the graph data structure.
|
|
It supports the Cypher query language for querying graph data.
|
|
FalkorDB can be integrated with vector search capabilities for AI applications.
|
|
It provides a Redis module, allowing users to leverage Redis's features alongside graph capabilities."""
|
|
|
|
# Add the sample text to the dataset
|
|
await cognee.add([sample_text], dataset_name)
|
|
|
|
# Process the added document to extract knowledge
|
|
await cognee.cognify([dataset_name])
|
|
|
|
# Now let's perform some searches
|
|
# 1. Search for insights related to "FalkorDB"
|
|
insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="FalkorDB")
|
|
print("\nInsights about FalkorDB:")
|
|
for result in insights_results:
|
|
print(f"- {result}")
|
|
|
|
# 2. Search for text chunks related to "graph database"
|
|
chunks_results = await cognee.search(
|
|
query_type=SearchType.CHUNKS, query_text="graph database", datasets=[dataset_name]
|
|
)
|
|
print("\nChunks about graph database:")
|
|
for result in chunks_results:
|
|
print(f"- {result}")
|
|
|
|
# 3. Get graph completion related to databases
|
|
graph_completion_results = await cognee.search(
|
|
query_type=SearchType.GRAPH_COMPLETION, query_text="database"
|
|
)
|
|
print("\nGraph completion for databases:")
|
|
for result in graph_completion_results:
|
|
print(f"- {result}")
|
|
|
|
# Clean up (optional)
|
|
# await cognee.prune.prune_data()
|
|
# await cognee.prune.prune_system(metadata=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main())
|