cognee/evals/eval_swe_bench.py
Boris 348610e73c
fix: refactor get_graph_from_model to return nodes and edges correctly (#257)
* fix: handle rate limit error coming from llm model

* fix: fixes lost edges and nodes in get_graph_from_model

* fix: fixes database pruning issue in pgvector (#261)

* fix: cognee_demo notebook pipeline is not saving summaries

---------

Co-authored-by: hajdul88 <52442977+hajdul88@users.noreply.github.com>
2024-12-06 12:52:01 +01:00

197 lines
6.3 KiB
Python

import argparse
import json
import subprocess
import sys
from pathlib import Path
from swebench.harness.utils import load_swebench_dataset
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
from cognee.api.v1.search import SearchType
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.llm.prompts import read_query_prompt
from cognee.modules.pipelines import Task, run_tasks
from cognee.modules.retrieval.brute_force_triplet_search import \
brute_force_triplet_search
# from cognee.shared.data_models import SummarizedContent
from cognee.shared.utils import render_graph
from cognee.tasks.repo_processor import (enrich_dependency_graph,
expand_dependency_graph,
get_repo_file_dependencies)
from cognee.tasks.storage import add_data_points
# from cognee.tasks.summarization import summarize_code
from evals.eval_utils import download_github_repo, retrieved_edges_to_string
def check_install_package(package_name):
"""
Check if a pip package is installed and install it if not.
Returns True if package is/was installed successfully, False otherwise.
"""
try:
__import__(package_name)
return True
except ImportError:
try:
subprocess.check_call(
[sys.executable, "-m", "pip", "install", package_name]
)
return True
except subprocess.CalledProcessError:
return False
async def generate_patch_with_cognee(instance, llm_client, search_type=SearchType.CHUNKS):
import os
import pathlib
import cognee
from cognee.infrastructure.databases.relational import create_db_and_tables
file_path = Path(__file__).parent
data_directory_path = str(pathlib.Path(os.path.join(file_path, ".data_storage/code_graph")).resolve())
cognee.config.data_root_directory(data_directory_path)
cognee_directory_path = str(pathlib.Path(os.path.join(file_path, ".cognee_system/code_graph")).resolve())
cognee.config.system_root_directory(cognee_directory_path)
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata = True)
await create_db_and_tables()
# repo_path = download_github_repo(instance, '../RAW_GIT_REPOS')
repo_path = '/Users/borisarzentar/Projects/graphrag'
tasks = [
Task(get_repo_file_dependencies),
Task(enrich_dependency_graph, task_config = { "batch_size": 50 }),
Task(expand_dependency_graph, task_config = { "batch_size": 50 }),
Task(add_data_points, task_config = { "batch_size": 50 }),
# Task(summarize_code, summarization_model = SummarizedContent),
]
pipeline = run_tasks(tasks, repo_path, "cognify_code_pipeline")
async for result in pipeline:
print(result)
print('Here we have the repo under the repo_path')
await render_graph(None, include_labels = True, include_nodes = True)
problem_statement = instance['problem_statement']
instructions = read_query_prompt("patch_gen_kg_instructions.txt")
retrieved_edges = await brute_force_triplet_search(problem_statement, top_k = 3, collections = ["data_point_source_code", "data_point_text"])
retrieved_edges_str = retrieved_edges_to_string(retrieved_edges)
prompt = "\n".join([
problem_statement,
"<patch>",
PATCH_EXAMPLE,
"</patch>",
"These are the retrieved edges:",
retrieved_edges_str
])
llm_client = get_llm_client()
answer_prediction = await llm_client.acreate_structured_output(
text_input=prompt,
system_prompt=instructions,
response_model=str,
)
return answer_prediction
async def generate_patch_without_cognee(instance, llm_client):
instructions = read_query_prompt("patch_gen_instructions.txt")
answer_prediction = await llm_client.acreate_structured_output(
text_input=instance["text"],
system_prompt=instructions,
response_model=str,
)
return answer_prediction
async def get_preds(dataset, with_cognee=True):
llm_client = get_llm_client()
if with_cognee:
model_name = "with_cognee"
pred_func = generate_patch_with_cognee
else:
model_name = "without_cognee"
pred_func = generate_patch_without_cognee
futures = [
(instance["instance_id"], pred_func(instance, llm_client))
for instance in dataset
]
model_patches = await asyncio.gather(*[x[1] for x in futures])
preds = [
{
"instance_id": instance_id,
"model_patch": model_patch,
"model_name_or_path": model_name,
}
for (instance_id, _), model_patch in zip(futures, model_patches)
]
return preds
async def main():
parser = argparse.ArgumentParser(
description="Run LLM predictions on SWE-bench dataset")
parser.add_argument('--cognee_off', action='store_true')
parser.add_argument("--max_workers", type=int, required=True)
args = parser.parse_args()
for dependency in ["transformers", "sentencepiece", "swebench"]:
check_install_package(dependency)
if args.cognee_off:
dataset_name = 'princeton-nlp/SWE-bench_Lite_bm25_13K'
dataset = load_swebench_dataset(dataset_name, split='test')
predictions_path = "preds_nocognee.json"
if not Path(predictions_path).exists():
preds = await get_preds(dataset, with_cognee=False)
with open(predictions_path, "w") as file:
json.dump(preds, file)
else:
dataset_name = 'princeton-nlp/SWE-bench_Lite'
swe_dataset = load_swebench_dataset(
dataset_name, split='test')[:1]
predictions_path = "preds.json"
preds = await get_preds(swe_dataset, with_cognee=not args.cognee_off)
with open(predictions_path, "w") as file:
json.dump(preds, file)
subprocess.run(
[
"python",
"-m",
"swebench.harness.run_evaluation",
"--dataset_name",
dataset_name,
"--split",
"test",
"--predictions_path",
predictions_path,
"--max_workers",
str(args.max_workers),
"--run_id",
"test_run",
]
)
if __name__ == "__main__":
import asyncio
asyncio.run(main(), debug=True)