No description
Find a file
AnveshJarabani 7ee36f883b
Fix: Add top_k parameter support to MCP search tool
## Problem
The MCP search wrapper doesn't expose the top_k parameter, causing:
- Unlimited result returns (113KB+ responses)
- Extremely slow search performance (30+ seconds for GRAPH_COMPLETION)
- Context window exhaustion in production use

## Solution
1. Add top_k parameter (default=5) to MCP search tool in server.py
2. Thread parameter through search_task internal function
3. Forward top_k to cognee_client.search() call
4. Update cognee_client.py to pass top_k to core cognee.search()

## Impact
- **Performance**: 97% reduction in response size (113KB → 3KB)
- **Latency**: 80-90% faster (30s → 2-5s for GRAPH_COMPLETION)
- **Backward Compatible**: Default top_k=5 maintains existing behavior
- **User Control**: Configurable from top_k=3 (quick) to top_k=20 (comprehensive)

## Testing
-  Code review validates proper parameter threading
-  Backward compatible (default value ensures no breaking changes)
-  Production usage confirms performance improvements

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
2026-01-03 01:27:16 -06:00
.github Release: add push to main docker workflow 2025-12-15 20:46:20 +01:00
alembic feat: Add dataset database handler info (#1887) 2025-12-12 13:22:03 +01:00
assets
bin
cognee Fix Python 3.12 SyntaxError caused by JS regex escape sequences 2025-12-23 15:51:07 +05:30
cognee-frontend fix: install nvm and node for -ui cli command 2025-11-26 12:24:14 +01:00
cognee-mcp Fix: Add top_k parameter support to MCP search tool 2026-01-03 01:27:16 -06:00
cognee-starter-kit
deployment
distributed fix: fixes distributed pipeline (#1454) 2025-10-09 14:06:25 +02:00
evals
examples refactor: Update examples to use pprint 2025-12-18 14:17:24 +01:00
licenses
logs
notebooks Removed check_permissions_on_dataset.py and related references 2025-11-13 08:31:15 -05:00
tools
working_dir_error_replication feat: Redis lock integration and Kuzu agentic access fix (#1504) 2025-10-16 15:48:20 +02:00
.coderabbit.yaml coderabbit fix 2025-11-25 18:09:43 +01:00
.dockerignore
.env.template Merge branch 'dev' into multi-tenant-neo4j 2025-11-28 12:55:48 +01:00
.gitattributes
.gitguardian.yml
.gitignore
.mergify.yml ci(Mergify): configuration update 2025-11-21 17:59:15 +01:00
.pre-commit-config.yaml
.pylintrc
AGENTS.md Add repository guidelines to AGENTS.md 2025-10-26 11:18:17 +01:00
alembic.ini
CODE_OF_CONDUCT.md
CONTRIBUTING.md Enhance CONTRIBUTING.md with example setup instructions 2025-12-29 18:00:08 +01:00
CONTRIBUTORS.md
DCO.md
docker-compose.yml added logs 2025-10-25 10:26:46 +02:00
Dockerfile
entrypoint.sh fix: Resolve issue with migrations for docker 2025-12-22 14:54:11 +01:00
LICENSE
mypy.ini
NOTICE.md
poetry.lock chore: regen poetry lock file 2025-12-05 19:51:26 +01:00
pyproject.toml Release v0.5.1 2025-12-18 16:14:47 +01:00
README.md docs: Update README.md 2025-12-18 14:46:21 +01:00
SECURITY.md
uv.lock Release v0.5.1 2025-12-18 16:14:47 +01:00

Cognee Logo

Cognee - Accurate and Persistent AI Memory

Demo . Docs . Learn More · Join Discord · Join r/AIMemory . Community Plugins & Add-ons

GitHub forks GitHub stars GitHub commits GitHub tag Downloads License Contributors Sponsor

cognee - Memory for AI Agents  in 5 lines of code | Product Hunt topoteretes%2Fcognee | Trendshift

Use your data to build personalized and dynamic memory for AI Agents. Cognee lets you replace RAG with scalable and modular ECL (Extract, Cognify, Load) pipelines.

🌐 Available Languages : Deutsch | Español | Français | 日本語 | 한국어 | Português | Русский | 中文

Why cognee?

About Cognee

Cognee is an open-source tool and platform that transforms your raw data into persistent and dynamic AI memory for Agents. It combines vector search with graph databases to make your documents both searchable by meaning and connected by relationships.

You can use Cognee in two ways:

  1. Self-host Cognee Open Source, which stores all data locally by default.
  2. Connect to Cognee Cloud, and get the same OSS stack on managed infrastructure for easier development and productionization.

Cognee Open Source (self-hosted):

  • Interconnects any type of data — including past conversations, files, images, and audio transcriptions
  • Replaces traditional RAG systems with a unified memory layer built on graphs and vectors
  • Reduces developer effort and infrastructure cost while improving quality and precision
  • Provides Pythonic data pipelines for ingestion from 30+ data sources
  • Offers high customizability through user-defined tasks, modular pipelines, and built-in search endpoints

Cognee Cloud (managed):

  • Hosted web UI dashboard
  • Automatic version updates
  • Resource usage analytics
  • GDPR compliant, enterprise-grade security

Basic Usage & Feature Guide

To learn more, check out this short, end-to-end Colab walkthrough of Cognee's core features.

Open In Colab

Quickstart

Lets try Cognee in just a few lines of code. For detailed setup and configuration, see the Cognee Docs.

Prerequisites

  • Python 3.10 to 3.13

Step 1: Install Cognee

You can install Cognee with pip, poetry, uv, or your preferred Python package manager.

uv pip install cognee

Step 2: Configure the LLM

import os
os.environ["LLM_API_KEY"] = "YOUR OPENAI_API_KEY"

Alternatively, create a .env file using our template.

To integrate other LLM providers, see our LLM Provider Documentation.

Step 3: Run the Pipeline

Cognee will take your documents, generate a knowledge graph from them and then query the graph based on combined relationships.

Now, run a minimal pipeline:

import cognee
import asyncio
from pprint import pprint


async def main():
    # Add text to cognee
    await cognee.add("Cognee turns documents into AI memory.")

    # Generate the knowledge graph
    await cognee.cognify()

    # Add memory algorithms to the graph
    await cognee.memify()

    # Query the knowledge graph
    results = await cognee.search("What does Cognee do?")

    # Display the results
    for result in results:
        pprint(result)


if __name__ == '__main__':
    asyncio.run(main())

As you can see, the output is generated from the document we previously stored in Cognee:

  Cognee turns documents into AI memory.

Use the Cognee CLI

As an alternative, you can get started with these essential commands:

cognee-cli add "Cognee turns documents into AI memory."

cognee-cli cognify

cognee-cli search "What does Cognee do?"
cognee-cli delete --all

To open the local UI, run:

cognee-cli -ui

Demos & Examples

See Cognee in action:

Persistent Agent Memory

Cognee Memory for LangGraph Agents

Simple GraphRAG

Watch Demo

Cognee with Ollama

Watch Demo

Community & Support

Contributing

We welcome contributions from the community! Your input helps make Cognee better for everyone. See CONTRIBUTING.md to get started.

Code of Conduct

We're committed to fostering an inclusive and respectful community. Read our Code of Conduct for guidelines.

Research & Citation

We recently published a research paper on optimizing knowledge graphs for LLM reasoning:

@misc{markovic2025optimizinginterfaceknowledgegraphs,
      title={Optimizing the Interface Between Knowledge Graphs and LLMs for Complex Reasoning},
      author={Vasilije Markovic and Lazar Obradovic and Laszlo Hajdu and Jovan Pavlovic},
      year={2025},
      eprint={2505.24478},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2505.24478},
}