cognee/notebooks/cognee_llama_index.ipynb
Igor Ilic 4b55354dce
fix: Resolve issue with pgvector timeout (#3)
By creating PGVector as a singleton all issues regrading timeout are
resolved as there are no more parallel instances trying to communicate
with the database
2024-11-19 15:31:26 +01:00

229 lines
6.3 KiB
Text

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Cognee GraphRAG with LlamaIndex Documents"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install llama-index-core"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Data\n",
"\n",
"We will use a sample news article dataset retrieved from Diffbot, which Tomaz has conveniently made available on GitHub for easy access.\n",
"\n",
"The dataset contains 2,500 samples; for ease of experimentation, we will use 5 of these samples, which include the `title` and `text` of news articles."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from llama_index.core import Document\n",
"\n",
"news = pd.read_csv(\n",
" \"https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/news_articles.csv\"\n",
")[:5]\n",
"\n",
"news.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare documents as required by LlamaIndex"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"documents = [\n",
" Document(text=f\"{row['title']}: {row['text']}\")\n",
" for i, row in news.iterrows()\n",
"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set environment variables"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"# Setting environment variables\n",
"if \"GRAPHISTRY_USERNAME\" not in os.environ: \n",
" os.environ[\"GRAPHISTRY_USERNAME\"] = \"\"\n",
"\n",
"if \"GRAPHISTRY_PASSWORD\" not in os.environ: \n",
" os.environ[\"GRAPHISTRY_PASSWORD\"] = \"\"\n",
"\n",
"if \"LLM_API_KEY\" not in os.environ:\n",
" os.environ[\"LLM_API_KEY\"] = \"\"\n",
"\n",
"# \"neo4j\" or \"networkx\"\n",
"os.environ[\"GRAPH_DATABASE_PROVIDER\"]=\"networkx\" \n",
"# Not needed if using networkx\n",
"#GRAPH_DATABASE_URL=\"\"\n",
"#GRAPH_DATABASE_USERNAME=\"\"\n",
"#GRAPH_DATABASE_PASSWORD=\"\"\n",
"\n",
"# \"qdrant\", \"weaviate\" or \"lancedb\"\n",
"os.environ[\"VECTOR_DB_PROVIDER\"]=\"lancedb\" \n",
"# Not needed if using \"lancedb\"\n",
"# os.environ[\"VECTOR_DB_URL\"]=\"\"\n",
"# os.environ[\"VECTOR_DB_KEY\"]=\"\"\n",
"\n",
"# Database provider\n",
"os.environ[\"DB_PROVIDER\"]=\"sqlite\" # or \"postgres\"\n",
"\n",
"# Database name\n",
"os.environ[\"DB_NAME\"]=\"cognee_db\"\n",
"\n",
"# Postgres specific parameters (Only if Postgres is run)\n",
"# os.environ[\"DB_HOST\"]=\"127.0.0.1\"\n",
"# os.environ[\"DB_PORT\"]=\"5432\"\n",
"# os.environ[\"DB_USERNAME\"]=\"cognee\"\n",
"# os.environ[\"DB_PASSWORD\"]=\"cognee\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run Cognee with LlamaIndex Documents"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from typing import Union, BinaryIO\n",
"\n",
"from cognee.infrastructure.databases.vector.pgvector import create_db_and_tables as create_pgvector_db_and_tables\n",
"from cognee.infrastructure.databases.relational import create_db_and_tables as create_relational_db_and_tables\n",
"from cognee.infrastructure.databases.graph import get_graph_engine\n",
"from cognee.shared.utils import render_graph\n",
"from cognee.modules.users.models import User\n",
"from cognee.modules.users.methods import get_default_user\n",
"from cognee.tasks.ingestion.ingest_data_with_metadata import ingest_data_with_metadata\n",
"import cognee\n",
"\n",
"# Create a clean slate for cognee -- reset data and system state\n",
"await cognee.prune.prune_data()\n",
"await cognee.prune.prune_system(metadata=True)\n",
"\n",
"# Add the LlamaIndex documents, and make it available for cognify\n",
"async def add(data: Union[BinaryIO, list[BinaryIO], str, list[str]], dataset_name: str = \"main_dataset\", user: User = None):\n",
" await create_relational_db_and_tables()\n",
" await create_pgvector_db_and_tables()\n",
"\n",
" if user is None:\n",
" user = await get_default_user()\n",
"\n",
" await ingest_data_with_metadata(data, dataset_name, user)\n",
"\n",
"await add(documents)\n",
"\n",
"# Use LLMs and cognee to create knowledge graph\n",
"await cognee.cognify()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Query Cognee for summaries related to data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from cognee import SearchType\n",
"\n",
"# Query cognee for summaries\n",
"search_results = await cognee.search(\n",
" SearchType.SUMMARIES, query_text=\"What are the main news discussed in the document?\"\n",
")\n",
"# Display search results\n",
"print(\"\\n Summary of main news discussed:\\n\")\n",
"print(search_results[0][\"text\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Render Knowledge Graph generated from provided data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import graphistry\n",
"\n",
"# Get graph\n",
"graphistry.login(username=os.getenv(\"GRAPHISTRY_USERNAME\"), password=os.getenv(\"GRAPHISTRY_PASSWORD\"))\n",
"graph_engine = await get_graph_engine()\n",
"\n",
"graph_url = await render_graph(graph_engine.graph)\n",
"print(graph_url)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}