cognee/evals/eval_swe_bench.py

118 lines
3.9 KiB
Python

import argparse
import json
import subprocess
from pathlib import Path
from datasets import Dataset
from swebench.harness.utils import load_swebench_dataset
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
import cognee
from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline
from cognee.api.v1.search import SearchType
from cognee.infrastructure.databases.graph import get_graph_engine
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.llm.prompts import read_query_prompt
from evals.eval_utils import download_instances
async def generate_patch_with_cognee(instance, search_type=SearchType.CHUNKS):
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
dataset_name = "SWE_test_data"
code_text = instance["text"]
await cognee.add([code_text], dataset_name)
await code_graph_pipeline([dataset_name])
graph_engine = await get_graph_engine()
with open(graph_engine.filename, "r") as f:
graph_str = f.read()
problem_statement = instance['problem_statement']
instructions = read_query_prompt("patch_gen_instructions.txt")
prompt = "\n".join([
instructions,
"<patch>",
PATCH_EXAMPLE,
"</patch>",
"This is the knowledge graph:",
graph_str
])
llm_client = get_llm_client()
answer_prediction = await llm_client.acreate_structured_output(
text_input=problem_statement,
system_prompt=prompt,
response_model=str,
)
return answer_prediction
async def generate_patch_without_cognee(instance):
problem_statement = instance['problem_statement']
prompt = instance["text"]
llm_client = get_llm_client()
answer_prediction = await llm_client.acreate_structured_output(
text_input=problem_statement,
system_prompt=prompt,
response_model=str,
)
return answer_prediction
async def get_preds(dataset, with_cognee=True):
if with_cognee:
model_name = "with_cognee"
pred_func = generate_patch_with_cognee
else:
model_name = "without_cognee"
pred_func = generate_patch_without_cognee
preds = [{"instance_id": instance["instance_id"],
"model_patch": await pred_func(instance),
"model_name_or_path": model_name} for instance in dataset]
return preds
async def main():
parser = argparse.ArgumentParser(
description="Run LLM predictions on SWE-bench dataset")
parser.add_argument('--cognee_off', action='store_true')
args = parser.parse_args()
if args.cognee_off:
dataset_name = 'princeton-nlp/SWE-bench_Lite_bm25_13K'
dataset = load_swebench_dataset(dataset_name, split='test')
predictions_path = "preds_nocognee.json"
if not Path(predictions_path).exists():
preds = await get_preds(dataset, with_cognee=False)
with open(predictions_path, "w") as file:
json.dump(preds, file)
else:
dataset_name = 'princeton-nlp/SWE-bench_Lite'
swe_dataset = load_swebench_dataset(
dataset_name, split='test')[:1]
filepath = Path("SWE-bench_testsample")
if filepath.exists():
dataset = Dataset.load_from_disk(filepath)
else:
dataset = download_instances(swe_dataset, filepath)
predictions_path = "preds.json"
preds = await get_preds(dataset, with_cognee=not args.cognee_off)
with open(predictions_path, "w") as file:
json.dump(preds, file)
subprocess.run(["python", "-m", "swebench.harness.run_evaluation",
"--dataset_name", dataset_name,
"--split", "test",
"--predictions_path", predictions_path,
"--max_workers", "1",
"--run_id", "test_run"])
if __name__ == "__main__":
import asyncio
asyncio.run(main(), debug=True)