Co-authored-by: hajdul88 <52442977+hajdul88@users.noreply.github.com> Co-authored-by: hande-k <handekafkas7@gmail.com> Co-authored-by: Igor Ilic <igorilic03@gmail.com> Co-authored-by: Vasilije <8619304+Vasilije1990@users.noreply.github.com> Co-authored-by: Igor Ilic <30923996+dexters1@users.noreply.github.com>
179 lines
7.6 KiB
Python
179 lines
7.6 KiB
Python
import numpy as np
|
|
|
|
from typing import List, Dict, Union
|
|
from cognee.infrastructure.databases.graph.graph_db_interface import GraphDBInterface
|
|
from cognee.modules.graph.cognee_graph.CogneeGraphElements import Node, Edge
|
|
from cognee.modules.graph.cognee_graph.CogneeAbstractGraph import CogneeAbstractGraph
|
|
import heapq
|
|
from graphistry import edges
|
|
|
|
|
|
class CogneeGraph(CogneeAbstractGraph):
|
|
"""
|
|
Concrete implementation of the AbstractGraph class for Cognee.
|
|
|
|
This class provides the functionality to manage nodes and edges,
|
|
and project a graph from a database using adapters.
|
|
"""
|
|
|
|
nodes: Dict[str, Node]
|
|
edges: List[Edge]
|
|
directed: bool
|
|
|
|
def __init__(self, directed: bool = True):
|
|
self.nodes = {}
|
|
self.edges = []
|
|
self.directed = directed
|
|
|
|
def add_node(self, node: Node) -> None:
|
|
if node.id not in self.nodes:
|
|
self.nodes[node.id] = node
|
|
else:
|
|
raise ValueError(f"Node with id {node.id} already exists.")
|
|
|
|
def add_edge(self, edge: Edge) -> None:
|
|
if edge not in self.edges:
|
|
self.edges.append(edge)
|
|
edge.node1.add_skeleton_edge(edge)
|
|
edge.node2.add_skeleton_edge(edge)
|
|
else:
|
|
raise ValueError(f"Edge {edge} already exists in the graph.")
|
|
|
|
def get_node(self, node_id: str) -> Node:
|
|
return self.nodes.get(node_id, None)
|
|
|
|
def get_edges_of_node(self, node_id: str) -> List[Edge]:
|
|
node = self.get_node(node_id)
|
|
if node:
|
|
return node.skeleton_edges
|
|
else:
|
|
raise ValueError(f"Node with id {node_id} does not exist.")
|
|
|
|
def get_edges(self)-> List[Edge]:
|
|
return edges
|
|
|
|
async def project_graph_from_db(self,
|
|
adapter: Union[GraphDBInterface],
|
|
node_properties_to_project: List[str],
|
|
edge_properties_to_project: List[str],
|
|
directed = True,
|
|
node_dimension = 1,
|
|
edge_dimension = 1,
|
|
memory_fragment_filter = []) -> None:
|
|
|
|
if node_dimension < 1 or edge_dimension < 1:
|
|
raise ValueError("Dimensions must be positive integers")
|
|
|
|
try:
|
|
if len(memory_fragment_filter) == 0:
|
|
nodes_data, edges_data = await adapter.get_graph_data()
|
|
else:
|
|
nodes_data, edges_data = await adapter.get_filtered_graph_data(attribute_filters = memory_fragment_filter)
|
|
|
|
if not nodes_data:
|
|
raise ValueError("No node data retrieved from the database.")
|
|
if not edges_data:
|
|
raise ValueError("No edge data retrieved from the database.")
|
|
|
|
for node_id, properties in nodes_data:
|
|
node_attributes = {key: properties.get(key) for key in node_properties_to_project}
|
|
self.add_node(Node(str(node_id), node_attributes, dimension=node_dimension))
|
|
|
|
for source_id, target_id, relationship_type, properties in edges_data:
|
|
source_node = self.get_node(str(source_id))
|
|
target_node = self.get_node(str(target_id))
|
|
if source_node and target_node:
|
|
edge_attributes = {key: properties.get(key) for key in edge_properties_to_project}
|
|
edge_attributes['relationship_type'] = relationship_type
|
|
|
|
edge = Edge(source_node, target_node, attributes=edge_attributes, directed=directed, dimension=edge_dimension)
|
|
self.add_edge(edge)
|
|
|
|
source_node.add_skeleton_edge(edge)
|
|
target_node.add_skeleton_edge(edge)
|
|
|
|
else:
|
|
raise ValueError(f"Edge references nonexistent nodes: {source_id} -> {target_id}")
|
|
|
|
except (ValueError, TypeError) as e:
|
|
print(f"Error projecting graph: {e}")
|
|
except Exception as ex:
|
|
print(f"Unexpected error: {ex}")
|
|
|
|
async def map_vector_distances_to_graph_nodes(self, node_distances) -> None:
|
|
for category, scored_results in node_distances.items():
|
|
for scored_result in scored_results:
|
|
node_id = str(scored_result.id)
|
|
score = scored_result.score
|
|
node =self.get_node(node_id)
|
|
if node:
|
|
node.add_attribute("vector_distance", score)
|
|
else:
|
|
print(f"Node with id {node_id} not found in the graph.")
|
|
|
|
async def map_vector_distances_to_graph_edges(self, vector_engine, query) -> None: # :TODO: When we calculate edge embeddings in vector db change this similarly to node mapping
|
|
try:
|
|
# Step 1: Generate the query embedding
|
|
query_vector = await vector_engine.embed_data([query])
|
|
query_vector = query_vector[0]
|
|
if query_vector is None or len(query_vector) == 0:
|
|
raise ValueError("Failed to generate query embedding.")
|
|
|
|
# Step 2: Collect all unique relationship types
|
|
unique_relationship_types = set()
|
|
for edge in self.edges:
|
|
relationship_type = edge.attributes.get('relationship_type')
|
|
if relationship_type:
|
|
unique_relationship_types.add(relationship_type)
|
|
|
|
# Step 3: Embed all unique relationship types
|
|
unique_relationship_types = list(unique_relationship_types)
|
|
relationship_type_embeddings = await vector_engine.embed_data(unique_relationship_types)
|
|
|
|
# Step 4: Map relationship types to their embeddings and calculate distances
|
|
embedding_map = {}
|
|
for relationship_type, embedding in zip(unique_relationship_types, relationship_type_embeddings):
|
|
edge_vector = np.array(embedding)
|
|
|
|
# Calculate cosine similarity
|
|
similarity = np.dot(query_vector, edge_vector) / (
|
|
np.linalg.norm(query_vector) * np.linalg.norm(edge_vector)
|
|
)
|
|
distance = 1 - similarity
|
|
|
|
# Round the distance to 4 decimal places and store it
|
|
embedding_map[relationship_type] = round(distance, 4)
|
|
|
|
# Step 4: Assign precomputed distances to edges
|
|
for edge in self.edges:
|
|
relationship_type = edge.attributes.get('relationship_type')
|
|
if not relationship_type or relationship_type not in embedding_map:
|
|
print(f"Edge {edge} has an unknown or missing relationship type.")
|
|
continue
|
|
|
|
# Assign the precomputed distance
|
|
edge.attributes["vector_distance"] = embedding_map[relationship_type]
|
|
|
|
except Exception as ex:
|
|
print(f"Error mapping vector distances to edges: {ex}")
|
|
|
|
|
|
async def calculate_top_triplet_importances(self, k = int) -> List:
|
|
min_heap = []
|
|
for i, edge in enumerate(self.edges):
|
|
source_node = self.get_node(edge.node1.id)
|
|
target_node = self.get_node(edge.node2.id)
|
|
|
|
source_distance = source_node.attributes.get("vector_distance", 0) if source_node else 0
|
|
target_distance = target_node.attributes.get("vector_distance", 0) if target_node else 0
|
|
edge_distance = edge.attributes.get("vector_distance", 0)
|
|
|
|
total_distance = source_distance + target_distance + edge_distance
|
|
|
|
heapq.heappush(min_heap, (-total_distance, i, edge))
|
|
if len(min_heap) > k:
|
|
heapq.heappop(min_heap)
|
|
|
|
|
|
return [edge for _, _, edge in sorted(min_heap)]
|
|
|