cognee/cognee/tests/test_custom_data_label.py

68 lines
2 KiB
Python

import asyncio
import cognee
from cognee.shared.logging_utils import setup_logging, ERROR
from cognee.api.v1.search import SearchType
async def main():
# Create a clean slate for cognee -- reset data and system state
print("Resetting cognee data...")
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
print("Data reset complete.\n")
# cognee knowledge graph will be created based on this text
text = """
Natural language processing (NLP) is an interdisciplinary
subfield of computer science and information retrieval.
"""
from cognee.tasks.ingestion.data_item import DataItem
test_item = DataItem(text, "test_item")
# Add the text, and make it available for cognify
await cognee.add(test_item)
# Use LLMs and cognee to create knowledge graph
ret_val = await cognee.cognify()
query_text = "Tell me about NLP"
print(f"Searching cognee for insights with query: '{query_text}'")
# Query cognee for insights on the added text
search_results = await cognee.search(
query_type=SearchType.GRAPH_COMPLETION, query_text=query_text
)
print("Search results:")
# Display results
for result_text in search_results:
print(result_text)
from cognee.modules.data.methods.get_dataset_data import get_dataset_data
for pipeline in ret_val.values():
dataset_id = pipeline.dataset_id
dataset_data = await get_dataset_data(dataset_id=dataset_id)
from fastapi.encoders import jsonable_encoder
data = [
dict(
**jsonable_encoder(data),
dataset_id=dataset_id,
)
for data in dataset_data
]
# Check if label is properly added and stored
assert data[0]["label"] == "test_item"
if __name__ == "__main__":
logger = setup_logging(log_level=ERROR)
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
loop.run_until_complete(main())
finally:
loop.run_until_complete(loop.shutdown_asyncgens())