cognee/cognee/api/v1/cognify/cognify_v2.py

164 lines
8.4 KiB
Python

import asyncio
import logging
from typing import Union
from cognee.infrastructure.databases.graph import get_graph_config
from cognee.modules.cognify.config import get_cognify_config
from cognee.infrastructure.databases.relational import get_relational_engine
from cognee.modules.data.processing.document_types.AudioDocument import AudioDocument
from cognee.modules.data.processing.document_types.ImageDocument import ImageDocument
from cognee.shared.data_models import KnowledgeGraph
from cognee.modules.data.processing.document_types import PdfDocument, TextDocument
# from cognee.modules.cognify.vector import save_data_chunks
# from cognee.modules.data.processing.process_documents import process_documents
# from cognee.modules.classification.classify_text_chunks import classify_text_chunks
# from cognee.modules.data.extraction.data_summary.summarize_text_chunks import summarize_text_chunks
# from cognee.modules.data.processing.filter_affected_chunks import filter_affected_chunks
# from cognee.modules.data.processing.remove_obsolete_chunks import remove_obsolete_chunks
# from cognee.modules.data.extraction.knowledge_graph.expand_knowledge_graph import expand_knowledge_graph
# from cognee.modules.data.extraction.knowledge_graph.establish_graph_topology import establish_graph_topology
from cognee.modules.data.models import Dataset, Data
from cognee.modules.data.operations.get_dataset_data import get_dataset_data
from cognee.modules.data.operations.retrieve_datasets import retrieve_datasets
from cognee.modules.pipelines.tasks.Task import Task
from cognee.modules.pipelines import run_tasks, run_tasks_parallel
from cognee.modules.users.models import User
from cognee.modules.users.methods import get_default_user
from cognee.modules.users.permissions.methods import check_permissions_on_documents
from cognee.modules.pipelines.operations.get_pipeline_status import get_pipeline_status
from cognee.modules.pipelines.operations.log_pipeline_status import log_pipeline_status
from cognee.tasks.chunk_extract_summary.chunk_extract_summary import chunk_extract_summary_task
from cognee.tasks.chunk_naive_llm_classifier.chunk_naive_llm_classifier import chunk_naive_llm_classifier_task
from cognee.tasks.chunk_remove_disconnected.chunk_remove_disconnected import chunk_remove_disconnected_task
from cognee.tasks.chunk_to_graph_decomposition.chunk_to_graph_decomposition import chunk_to_graph_decomposition_task
from cognee.tasks.save_chunks_to_store.save_chunks_to_store import save_chunks_to_store_task
from cognee.tasks.chunk_update_check.chunk_update_check import chunk_update_check_task
from cognee.tasks.chunks_into_graph.chunks_into_graph import \
chunks_into_graph_task
from cognee.tasks.source_documents_to_chunks.source_documents_to_chunks import source_documents_to_chunks
logger = logging.getLogger("cognify.v2")
update_status_lock = asyncio.Lock()
class PermissionDeniedException(Exception):
def __init__(self, message: str):
self.message = message
super().__init__(self.message)
async def cognify(datasets: Union[str, list[str]] = None, user: User = None):
db_engine = get_relational_engine()
if datasets is None or len(datasets) == 0:
return await cognify(await db_engine.get_datasets())
if type(datasets[0]) == str:
datasets = await retrieve_datasets(datasets)
if user is None:
user = await get_default_user()
async def run_cognify_pipeline(dataset: Dataset):
data: list[Data] = await get_dataset_data(dataset_id = dataset.id)
documents = [
PdfDocument(id = data_item.id, title=f"{data_item.name}.{data_item.extension}", file_path=data_item.raw_data_location) if data_item.extension == "pdf" else
AudioDocument(id = data_item.id, title=f"{data_item.name}.{data_item.extension}", file_path=data_item.raw_data_location) if data_item.extension == "audio" else
ImageDocument(id = data_item.id, title=f"{data_item.name}.{data_item.extension}", file_path=data_item.raw_data_location) if data_item.extension == "image" else
TextDocument(id = data_item.id, title=f"{data_item.name}.{data_item.extension}", file_path=data_item.raw_data_location)
for data_item in data
]
document_ids = [document.id for document in documents]
document_ids_str = list(map(str, document_ids))
await check_permissions_on_documents(
user,
"read",
document_ids,
)
dataset_id = dataset.id
dataset_name = generate_dataset_name(dataset.name)
async with update_status_lock:
task_status = await get_pipeline_status([dataset_id])
if dataset_id in task_status and task_status[dataset_id] == "DATASET_PROCESSING_STARTED":
logger.info("Dataset %s is already being processed.", dataset_name)
return
await log_pipeline_status(dataset_id, "DATASET_PROCESSING_STARTED", {
"dataset_name": dataset_name,
"files": document_ids_str,
})
try:
cognee_config = get_cognify_config()
graph_config = get_graph_config()
root_node_id = None
if graph_config.infer_graph_topology and graph_config.graph_topology_task:
from cognee.modules.topology.topology import TopologyEngine
topology_engine = TopologyEngine(infer=graph_config.infer_graph_topology)
root_node_id = await topology_engine.add_graph_topology(files = data)
elif graph_config.infer_graph_topology and not graph_config.infer_graph_topology:
from cognee.modules.topology.topology import TopologyEngine
topology_engine = TopologyEngine(infer=graph_config.infer_graph_topology)
await topology_engine.add_graph_topology(graph_config.topology_file_path)
elif not graph_config.graph_topology_task:
root_node_id = "ROOT"
tasks = [
Task(source_documents_to_chunks, parent_node_id = root_node_id), # Classify documents and save them as a nodes in graph db, extract text chunks based on the document type
Task(chunk_to_graph_decomposition_task, topology_model = KnowledgeGraph, task_config = { "batch_size": 10 }), # Set the graph topology for the document chunk data
Task(chunks_into_graph_task, graph_model = KnowledgeGraph, collection_name = "entities"), # Generate knowledge graphs from the document chunks and attach it to chunk nodes
Task(chunk_update_check_task, collection_name = "chunks"), # Find all affected chunks, so we don't process unchanged chunks
Task(
save_chunks_to_store_task,
collection_name = "chunks",
), # Save the document chunks in vector db and as nodes in graph db (connected to the document node and between each other)
run_tasks_parallel([
Task(
chunk_extract_summary_task,
summarization_model = cognee_config.summarization_model,
collection_name = "chunk_summaries",
), # Summarize the document chunks
Task(
chunk_naive_llm_classifier_task,
classification_model = cognee_config.classification_model,
),
]),
Task(chunk_remove_disconnected_task), # Remove the obsolete document chunks.
]
pipeline = run_tasks(tasks, documents)
async for result in pipeline:
print(result)
await log_pipeline_status(dataset_id, "DATASET_PROCESSING_FINISHED", {
"dataset_name": dataset_name,
"files": document_ids_str,
})
except Exception as error:
await log_pipeline_status(dataset_id, "DATASET_PROCESSING_ERROR", {
"dataset_name": dataset_name,
"files": document_ids_str,
})
raise error
existing_datasets = [dataset.name for dataset in list(await db_engine.get_datasets())]
awaitables = []
for dataset in datasets:
dataset_name = generate_dataset_name(dataset.name)
if dataset_name in existing_datasets:
awaitables.append(run_cognify_pipeline(dataset))
return await asyncio.gather(*awaitables)
def generate_dataset_name(dataset_name: str) -> str:
return dataset_name.replace(".", "_").replace(" ", "_")