cognee/evals/eval_swe_bench.py
2024-11-15 17:14:43 +01:00

128 lines
5 KiB
Python

from swebench.harness.utils import load_swebench_dataset
from swebench.harness.run_evaluation import get_dataset_from_preds
from swebench.harness.run_evaluation import run_instances
from swebench.harness.test_spec import make_test_spec, TestSpec
import subprocess
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
from evals.eval_utils import download_instances
import cognee
from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline
from cognee.api.v1.search import SearchType
from pathlib import Path
from cognee.infrastructure.databases.graph import get_graph_engine
from cognee.infrastructure.llm.get_llm_client import get_llm_client
async def cognee_and_llm(dataset, search_type = SearchType.CHUNKS):
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata = True)
dataset_name = "SWE_test_data"
code_text = dataset[0]["text"][:100000]
await cognee.add([code_text], dataset_name)
await cognee.cognify([dataset_name])
graph_engine = await get_graph_engine()
with open(graph_engine.filename, "r") as f:
graph_str = f.read()
problem_statement = dataset[0]['problem_statement']
instructions = (
f"I need you to solve this issue by looking at the provided knowledge graph and by "
+ f"generating a single patch file that I can apply directly to this repository "
+ f"using git apply. Please respond with a single patch "
+ f"file in the following format."
)
prompt = "\n".join([
instructions,
"<patch>",
PATCH_EXAMPLE,
"</patch>",
"This is the knowledge graph:",
graph_str
])
llm_client = get_llm_client()
answer_prediction = llm_client.create_structured_output(
text_input = problem_statement,
system_prompt = prompt,
response_model = str,
)
return answer_prediction
async def llm_on_preprocessed_data(dataset):
problem_statement = dataset[0]['problem_statement']
prompt = dataset[0]["text"]
llm_client = get_llm_client()
answer_prediction = llm_client.create_structured_output(
text_input = problem_statement,
system_prompt = prompt, # TODO check if this is correct
response_model = str,
)
return answer_prediction
async def get_preds(dataset, with_cognee):
if with_cognee:
text_output = await cognee_and_llm(dataset)
model_name = "with_cognee"
else:
text_output = await llm_on_preprocessed_data(dataset)
model_name = "without_cognee"
preds = {dataset[0]["instance_id"]:
{"instance_id": dataset[0]["instance_id"],
"model_patch": text_output,
"model_name_or_path": model_name}}
dataset_name = 'princeton-nlp/SWE-bench' if with_cognee else 'princeton-nlp/SWE-bench_bm25_13K'
preds_dataset = get_dataset_from_preds(dataset_name,
"test",
[dataset[0]["instance_id"]],
preds,
model_name)
return preds, preds_dataset
async def evaluate(test_specs: list[TestSpec],
preds: dict,
):
for test_spec in test_specs:
pred = preds[test_spec.instance_id]
log_dir = Path("logs")
log_dir.mkdir(parents=True, exist_ok=True)
patch_file = Path(log_dir / "patch.diff")
patch_file.write_text(pred["model_patch"] or "")
for command in test_spec.repo_script_list:
if "/testbed" in command:
command = command.replace("/testbed", "./testbed")
result = subprocess.run(command, shell=True, check=True, capture_output=True, text=True)
print(result)
subprocess.run("git apply --allow-empty -v logs/patch.diff", shell=True, capture_output=True, text=True)
async def main():
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench', split='test')
swe_dataset_preprocessed = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
test_data = swe_dataset[:1]
test_data_preprocessed = swe_dataset_preprocessed[:1]
assert test_data[0]["instance_id"] == test_data_preprocessed[0]["instance_id"]
filepath = Path("SWE-bench_testsample")
if filepath.exists():
from datasets import Dataset
dataset = Dataset.load_from_disk(filepath)
else:
dataset = download_instances(test_data, filepath)
cognee_preds, cognee_preds_dataset = await get_preds(dataset, with_cognee=True)
# nocognee_preds = await get_preds(dataset, with_cognee=False)
test_specs = list(map(make_test_spec, test_data))
results = await evaluate(test_specs, cognee_preds)
if __name__ == "__main__":
import asyncio
asyncio.run(main(), debug=True)