<!-- .github/pull_request_template.md --> ## Description <!-- Provide a clear description of the changes in this PR --> ## DCO Affirmation I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin. --------- Signed-off-by: Diego B Theuerkauf <diego.theuerkauf@tuebingen.mpg.de> Co-authored-by: Igor Ilic <30923996+dexters1@users.noreply.github.com> Co-authored-by: Boris Arzentar <borisarzentar@gmail.com> Co-authored-by: Boris <boris@topoteretes.com> Co-authored-by: Igor Ilic <igorilic03@gmail.com> Co-authored-by: Hande <159312713+hande-k@users.noreply.github.com> Co-authored-by: Matea Pesic <80577904+matea16@users.noreply.github.com> Co-authored-by: hajdul88 <52442977+hajdul88@users.noreply.github.com> Co-authored-by: Daniel Molnar <soobrosa@gmail.com> Co-authored-by: Diego Baptista Theuerkauf <34717973+diegoabt@users.noreply.github.com> Co-authored-by: Dmitrii Galkin <36552323+dm1tryG@users.noreply.github.com> Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com> Co-authored-by: lxobr <122801072+lxobr@users.noreply.github.com> Co-authored-by: github-actions[bot] <github-actions@users.noreply.github.com>
93 lines
3.4 KiB
Python
93 lines
3.4 KiB
Python
import os
|
|
import pathlib
|
|
import asyncio
|
|
import cognee
|
|
from cognee.modules.search.types import SearchType
|
|
|
|
|
|
async def main():
|
|
"""
|
|
Example script demonstrating how to use Cognee with Qdrant
|
|
|
|
This example:
|
|
1. Configures Cognee to use Qdrant as vector database
|
|
2. Sets up data directories
|
|
3. Adds sample data to Cognee
|
|
4. Processes (cognifies) the data
|
|
5. Performs different types of searches
|
|
"""
|
|
|
|
# Set up Qdrant credentials in .env file and get the values from environment variables
|
|
qdrant_url = os.getenv("VECTOR_DB_URL")
|
|
qdrant_key = os.getenv("VECTOR_DB_KEY")
|
|
|
|
# Configure Qdrant as the vector database provider
|
|
|
|
cognee.config.set_vector_db_config(
|
|
{
|
|
"vector_db_url": qdrant_url, # Enter Qdrant URL
|
|
"vector_db_key": qdrant_key, # API key needed
|
|
"vector_db_provider": "qdrant", # Specify Qdrant as provider
|
|
}
|
|
)
|
|
|
|
# Set up data directories for storing documents and system files
|
|
# You should adjust these paths to your needs
|
|
current_dir = pathlib.Path(__file__).parent
|
|
data_directory_path = str(current_dir / "data_storage")
|
|
cognee.config.data_root_directory(data_directory_path)
|
|
|
|
cognee_directory_path = str(current_dir / "cognee_system")
|
|
cognee.config.system_root_directory(cognee_directory_path)
|
|
|
|
# Clean any existing data (optional)
|
|
await cognee.prune.prune_data()
|
|
await cognee.prune.prune_system(metadata=True)
|
|
|
|
# Create a dataset
|
|
dataset_name = "qdrant_example"
|
|
|
|
# Add sample text to the dataset
|
|
sample_text = """Qdrant is a vector similarity search engine and vector database.
|
|
It provides a production-ready service with a convenient API for storing, searching, and managing vectors.
|
|
Qdrant supports filtering during vector search, which is essential for real-world applications.
|
|
The database implements various performance optimizations, including HNSW index for approximate nearest neighbor search.
|
|
Qdrant can be deployed via Docker, as a managed cloud service, or directly on bare metal.
|
|
It also supports payload and metadata storage alongside the vectors, allowing for rich data retrieval."""
|
|
|
|
# Add the sample text to the dataset
|
|
await cognee.add([sample_text], dataset_name)
|
|
|
|
# Process the added document to extract knowledge
|
|
await cognee.cognify([dataset_name])
|
|
|
|
# Now let's perform some searches
|
|
# 1. Search for insights related to "Qdrant"
|
|
insights_results = await cognee.search(query_type=SearchType.INSIGHTS, query_text="Qdrant")
|
|
print("\nInsights about Qdrant:")
|
|
for result in insights_results:
|
|
print(f"- {result}")
|
|
|
|
# 2. Search for text chunks related to "vector search"
|
|
chunks_results = await cognee.search(
|
|
query_type=SearchType.CHUNKS, query_text="vector search", datasets=[dataset_name]
|
|
)
|
|
print("\nChunks about vector search:")
|
|
for result in chunks_results:
|
|
print(f"- {result}")
|
|
|
|
# 3. Get graph completion related to databases
|
|
graph_completion_results = await cognee.search(
|
|
query_type=SearchType.GRAPH_COMPLETION, query_text="database"
|
|
)
|
|
print("\nGraph completion for databases:")
|
|
for result in graph_completion_results:
|
|
print(f"- {result}")
|
|
|
|
# Clean up (optional)
|
|
# await cognee.prune.prune_data()
|
|
# await cognee.prune.prune_system(metadata=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main())
|