cognee/cognee/eval_framework/modal_eval_dashboard.py
2025-08-27 19:14:16 +02:00

106 lines
3.2 KiB
Python

import os
import json
try:
import pandas as pd
except ImportError:
pd = None
import subprocess
import modal
import streamlit as st
# ----------------------------------------------------------------------------
# Volume and Image Setup
# ----------------------------------------------------------------------------
metrics_volume = modal.Volume.from_name("evaluation_dashboard_results", create_if_missing=True)
image = (
modal.Image.debian_slim(python_version="3.11")
.pip_install("streamlit", "plotly")
.add_local_file(__file__, "/root/serve_dashboard.py")
)
# ----------------------------------------------------------------------------
# Define and Deploy the App
# ----------------------------------------------------------------------------
app = modal.App(
name="metrics-dashboard",
image=image,
volumes={"/data": metrics_volume},
)
@app.function()
@modal.web_server(port=8000)
def run():
"""
Launch Streamlit server on port 8000 inside the container.
"""
cmd = (
"streamlit run /root/serve_dashboard.py "
"--server.port 8000 "
"--server.enableCORS=false "
"--server.enableXsrfProtection=false"
)
subprocess.Popen(cmd, shell=True)
# ----------------------------------------------------------------------------
# Streamlit Dashboard Application Logic
# ----------------------------------------------------------------------------
def main():
metrics_volume.reload()
st.set_page_config(page_title="Metrics Dashboard", layout="wide")
st.title("📊 Cognee Evaluations Dashboard")
data_path = "/data"
records = []
for filename in sorted(os.listdir(data_path)):
if not filename.endswith(".json"):
continue
base = filename.rsplit(".", 1)[0]
parts = base.split("_")
benchmark = parts[1] if len(parts) >= 3 else ""
full_path = os.path.join(data_path, filename)
with open(full_path, "r") as f:
items = json.load(f)
num_q = len(items)
total_em = sum(q["metrics"]["EM"]["score"] for q in items)
total_f1 = sum(q["metrics"]["f1"]["score"] for q in items)
total_corr = sum(q["metrics"]["correctness"]["score"] for q in items)
records.append(
{
"file": parts[0].upper() + "_____" + parts[2],
"benchmark": benchmark,
"questions": num_q,
"avg_EM": round(total_em / num_q, 4),
"avg_F1": round(total_f1 / num_q, 4),
"avg_correctness": round(total_corr / num_q, 4),
}
)
if pd is None:
st.error(
"Pandas is required for the evaluation dashboard. Install with 'pip install cognee[evals]' to use this feature."
)
return
df = pd.DataFrame(records)
if df.empty:
st.warning("No JSON files found in the volume.")
return
st.subheader("Results by benchmark")
for bm, group in df.groupby("benchmark"):
st.markdown(f"### {bm}")
st.dataframe(
group[["file", "questions", "avg_EM", "avg_F1", "avg_correctness"]],
use_container_width=True,
)
if __name__ == "__main__":
main()