No description
Find a file
2025-10-21 22:47:52 +01:00
.github CI: use scraping dependenies for integration tests 2025-10-21 22:46:50 +01:00
alembic chore: Update MCP version 2025-09-11 23:41:24 +02:00
assets chore: update cognee ui on readme 2025-09-11 11:05:18 +02:00
bin
cognee redefine preferred_loaders param to allow for args per loader 2025-10-21 22:47:52 +01:00
cognee-frontend COG-3050 - remove insights search (#1506) 2025-10-11 09:09:56 +02:00
cognee-mcp fix: Resolve issue with MCP 2025-10-14 15:44:21 +02:00
cognee-starter-kit improve structure, readability 2025-09-04 16:20:36 +02:00
deployment Fix/add async lock to all vector databases (#1244) 2025-08-14 15:57:34 +02:00
distributed chore: deletes toml and lock files from distributed directory 2025-10-14 09:55:02 +02:00
evals Deprecate SearchType.INSIGHTS, replace all references to default search type - SearchType.GRAPH_COMPLETION 2025-10-08 12:13:59 +01:00
examples remove fetchers_config, use default configs for Tavily and BeautifulSoup 2025-10-21 22:46:50 +01:00
licenses
logs
notebooks chore: remove memgraph from cognee repo 2025-10-15 17:32:48 +01:00
tools
working_dir_error_replication feat: Redis lock integration and Kuzu agentic access fix (#1504) 2025-10-16 15:48:20 +02:00
.dockerignore
.env.template updated env template 2025-10-19 15:53:38 +02:00
.gitattributes
.gitguardian.yml
.gitignore feat: add welcome tutorial notebook for new users (#1425) 2025-09-18 18:07:05 +02:00
.pre-commit-config.yaml
.pylintrc
alembic.ini
CODE_OF_CONDUCT.md
CONTRIBUTING.md Merge main vol 4 (#1200) 2025-08-05 12:48:24 +02:00
CONTRIBUTORS.md
DCO.md
docker-compose.yml feat: Redis lock integration and Kuzu agentic access fix (#1504) 2025-10-16 15:48:20 +02:00
Dockerfile fix: Resolve issue with Kuzu graph database persistence on our local … (#1490) 2025-10-07 20:38:43 +02:00
entrypoint.sh
LICENSE
mypy.ini
NOTICE.md
poetry.lock fix 2025-10-21 07:22:52 +02:00
pyproject.toml add merge 2025-10-21 07:24:12 +02:00
README.md chore: update colab notebook on README 2025-10-20 12:03:40 +02:00
SECURITY.md
uv.lock add merge 2025-10-21 07:24:12 +02:00

Cognee Logo

cognee - Memory for AI Agents in 6 lines of code

Demo . Learn more · Join Discord · Join r/AIMemory . Docs . cognee community repo

GitHub forks GitHub stars GitHub commits Github tag Downloads License Contributors Sponsor

cognee - Memory for AI Agents  in 5 lines of code | Product Hunt topoteretes%2Fcognee | Trendshift

Build dynamic memory for Agents and replace RAG using scalable, modular ECL (Extract, Cognify, Load) pipelines.

🌐 Available Languages : Deutsch | Español | français | 日本語 | 한국어 | Português | Русский | 中文

Why cognee?

Get Started

Get started quickly with a Google Colab notebook , Deepnote notebook or starter repo

About cognee

cognee works locally and stores your data on your device. Our hosted solution is just our deployment of OSS cognee on Modal, with the goal of making development and productionization easier.

Self-hosted package:

  • Interconnects any kind of documents: past conversations, files, images, and audio transcriptions
  • Replaces RAG systems with a memory layer based on graphs and vectors
  • Reduces developer effort and cost, while increasing quality and precision
  • Provides Pythonic data pipelines that manage data ingestion from 30+ data sources
  • Is highly customizable with custom tasks, pipelines, and a set of built-in search endpoints

Hosted platform:

Self-Hosted (Open Source)

📦 Installation

You can install Cognee using either pip, poetry, uv or any other python package manager.

Cognee supports Python 3.10 to 3.12

With uv

uv pip install cognee

Detailed instructions can be found in our docs

💻 Basic Usage

Setup

import os
os.environ["LLM_API_KEY"] = "YOUR OPENAI_API_KEY"

You can also set the variables by creating .env file, using our template. To use different LLM providers, for more info check out our documentation

Simple example

Python

This script will run the default pipeline:

import cognee
import asyncio


async def main():
    # Add text to cognee
    await cognee.add("Cognee turns documents into AI memory.")

    # Generate the knowledge graph
    await cognee.cognify()

    # Add memory algorithms to the graph
    await cognee.memify()

    # Query the knowledge graph
    results = await cognee.search("What does cognee do?")

    # Display the results
    for result in results:
        print(result)


if __name__ == '__main__':
    asyncio.run(main())

Example output:

  Cognee turns documents into AI memory.

Via CLI

Let's get the basics covered

cognee-cli add "Cognee turns documents into AI memory."

cognee-cli cognify

cognee-cli search "What does cognee do?"
cognee-cli delete --all

or run

cognee-cli -ui

Hosted Platform

Get up and running in minutes with automatic updates, analytics, and enterprise security.

  1. Sign up on cogwit
  2. Add your API key to local UI and sync your data to Cogwit

Demos

  1. Cogwit Beta demo:

Cogwit Beta

  1. Simple GraphRAG demo

Simple GraphRAG demo

  1. cognee with Ollama

cognee with local models

Contributing

Your contributions are at the core of making this a true open source project. Any contributions you make are greatly appreciated. See CONTRIBUTING.md for more information.

Code of Conduct

We are committed to making open source an enjoyable and respectful experience for our community. See CODE_OF_CONDUCT for more information.

Citation

We now have a paper you can cite:

@misc{markovic2025optimizinginterfaceknowledgegraphs,
      title={Optimizing the Interface Between Knowledge Graphs and LLMs for Complex Reasoning},
      author={Vasilije Markovic and Lazar Obradovic and Laszlo Hajdu and Jovan Pavlovic},
      year={2025},
      eprint={2505.24478},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2505.24478},
}