cognee/examples/python/memify_coding_agent_example.py
2025-09-03 16:08:32 +02:00

86 lines
2.7 KiB
Python

import asyncio
import pathlib
import os
import cognee
from cognee.api.v1.visualize.visualize import visualize_graph
from cognee.shared.logging_utils import setup_logging, ERROR
from cognee.api.v1.cognify.memify import memify
from cognee.modules.pipelines.tasks.task import Task
from cognee.tasks.memify.extract_subgraph import extract_subgraph
from cognee.modules.graph.utils import resolve_edges_to_text
from cognee.tasks.codingagents.coding_rule_associations import (
add_rule_associations,
get_existing_rules,
)
# Prerequisites:
# 1. Copy `.env.template` and rename it to `.env`.
# 2. Add your OpenAI API key to the `.env` file in the `LLM_API_KEY` field:
# LLM_API_KEY = "your_key_here"
async def main():
# Create a clean slate for cognee -- reset data and system state
print("Resetting cognee data...")
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
print("Data reset complete.\n")
# cognee knowledge graph will be created based on this text
text = """
Natural language processing (NLP) is an interdisciplinary
subfield of computer science and information retrieval.
"""
coding_rules_text = """
Code must be formatted by PEP8 standards.
Typing and Docstrings must be added.
"""
print("Adding text to cognee:")
print(text.strip())
# Add the text, and make it available for cognify
await cognee.add(text)
await cognee.add(coding_rules_text, node_set=["coding_rules"])
print("Text added successfully.\n")
# Use LLMs and cognee to create knowledge graph
await cognee.cognify()
print("Cognify process complete.\n")
subgraph_extraction_tasks = [Task(extract_subgraph)]
rule_association_tasks = [
Task(resolve_edges_to_text, task_config={"batch_size": 10}),
Task(
add_rule_associations,
rules_nodeset_name="coding_agent_rules",
user_prompt_location="memify_coding_rule_association_agent_user.txt",
system_prompt_location="memify_coding_rule_association_agent_system.txt",
),
]
await memify(
preprocessing_tasks=subgraph_extraction_tasks,
processing_tasks=rule_association_tasks,
node_name=["coding_rules"],
)
developer_rules = await get_existing_rules(rules_nodeset_name="coding_agent_rules")
print(developer_rules)
file_path = os.path.join(
pathlib.Path(__file__).parent, ".artifacts", "graph_visualization.html"
)
await visualize_graph(file_path)
if __name__ == "__main__":
logger = setup_logging(log_level=ERROR)
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
loop.run_until_complete(main())
finally:
loop.run_until_complete(loop.shutdown_asyncgens())