* Add telemetry * test: add github action test * fix: create graph only once * fix: handle graph file not existing while deleting it * fix: close qdrant connection in methods --------- Co-authored-by: Boris Arzentar <borisarzentar@gmail.com>
141 lines
4.8 KiB
Python
141 lines
4.8 KiB
Python
import asyncio
|
|
from uuid import UUID
|
|
from typing import List, Optional
|
|
from multiprocessing import Pool
|
|
from ..vector_db_interface import VectorDBInterface
|
|
from ..models.DataPoint import DataPoint
|
|
from ..models.ScoredResult import ScoredResult
|
|
from ..embeddings.EmbeddingEngine import EmbeddingEngine
|
|
|
|
|
|
class WeaviateAdapter(VectorDBInterface):
|
|
async_pool: Pool = None
|
|
embedding_engine: EmbeddingEngine = None
|
|
|
|
def __init__(self, url: str, api_key: str, embedding_engine: EmbeddingEngine):
|
|
import weaviate
|
|
import weaviate.classes as wvc
|
|
|
|
self.embedding_engine = embedding_engine
|
|
|
|
self.client = weaviate.connect_to_wcs(
|
|
cluster_url=url,
|
|
auth_credentials=weaviate.auth.AuthApiKey(api_key),
|
|
# headers = {
|
|
# "X-OpenAI-Api-Key": openai_api_key
|
|
# },
|
|
additional_config=wvc.init.AdditionalConfig(timeout=wvc.init.Timeout(init=30))
|
|
)
|
|
|
|
async def embed_data(self, data: List[str]) -> List[float]:
|
|
return await self.embedding_engine.embed_text(data)
|
|
|
|
async def collection_exists(self, collection_name: str) -> bool:
|
|
event_loop = asyncio.get_event_loop()
|
|
|
|
def sync_collection_exists():
|
|
return self.client.collections.exists(collection_name)
|
|
|
|
return await event_loop.run_in_executor(None, sync_collection_exists)
|
|
|
|
async def create_collection(self, collection_name: str):
|
|
import weaviate.classes.config as wvcc
|
|
|
|
event_loop = asyncio.get_event_loop()
|
|
|
|
def sync_create_collection():
|
|
return self.client.collections.create(
|
|
name=collection_name,
|
|
properties=[
|
|
wvcc.Property(
|
|
name="text",
|
|
data_type=wvcc.DataType.TEXT,
|
|
skip_vectorization=True
|
|
)
|
|
]
|
|
)
|
|
|
|
# try:
|
|
result = await event_loop.run_in_executor(None, sync_create_collection)
|
|
# finally:
|
|
# event_loop.shutdown_executor()
|
|
|
|
return result
|
|
|
|
def get_collection(self, collection_name: str):
|
|
return self.client.collections.get(collection_name)
|
|
|
|
async def create_data_points(self, collection_name: str, data_points: List[DataPoint]):
|
|
from weaviate.classes.data import DataObject
|
|
|
|
data_vectors = await self.embed_data(
|
|
list(map(lambda data_point: data_point.get_embeddable_data(), data_points)))
|
|
|
|
def convert_to_weaviate_data_points(data_point: DataPoint):
|
|
return DataObject(
|
|
uuid=data_point.id,
|
|
properties=data_point.payload,
|
|
vector=data_vectors[data_points.index(data_point)]
|
|
)
|
|
|
|
objects = list(map(convert_to_weaviate_data_points, data_points))
|
|
|
|
return self.get_collection(collection_name).data.insert_many(objects)
|
|
|
|
async def retrieve(self, collection_name: str, data_id: str):
|
|
def sync_retrieve():
|
|
return self.get_collection(collection_name).query.fetch_object_by_id(UUID(data_id))
|
|
|
|
event_loop = asyncio.get_event_loop()
|
|
|
|
# try:
|
|
data_point = await event_loop.run_in_executor(None, sync_retrieve)
|
|
# finally:
|
|
# event_loop.shutdown_executor()
|
|
|
|
data_point.payload = data_point.properties
|
|
del data_point.properties
|
|
|
|
return data_point
|
|
|
|
async def search(
|
|
self,
|
|
collection_name: str,
|
|
query_text: Optional[str] = None,
|
|
query_vector: Optional[List[float]] = None,
|
|
limit: int = None,
|
|
with_vector: bool = False
|
|
):
|
|
import weaviate.classes as wvc
|
|
|
|
if query_text is None and query_vector is None:
|
|
raise ValueError("One of query_text or query_vector must be provided!")
|
|
|
|
if query_vector is None:
|
|
query_vector = (await self.embed_data([query_text]))[0]
|
|
|
|
# def sync_search():
|
|
search_result = self.get_collection(collection_name).query.hybrid(
|
|
query = None,
|
|
vector = query_vector,
|
|
limit = limit,
|
|
include_vector = with_vector,
|
|
return_metadata = wvc.query.MetadataQuery(score=True),
|
|
)
|
|
|
|
return [
|
|
ScoredResult(
|
|
id=str(result.uuid),
|
|
payload=result.properties,
|
|
score=float(result.metadata.score)
|
|
) for result in search_result.objects
|
|
]
|
|
|
|
async def batch_search(self, collection_name: str, query_texts: List[str], limit: int, with_vectors: bool = False):
|
|
def query_search(query_vector):
|
|
return self.search(collection_name, query_vector=query_vector, limit=limit, with_vector=with_vectors)
|
|
|
|
return [await query_search(query_vector) for query_vector in await self.embed_data(query_texts)]
|
|
|
|
async def prune(self):
|
|
self.client.collections.delete_all()
|