<!-- .github/pull_request_template.md --> ## Description <!-- Provide a clear description of the changes in this PR --> ## DCO Affirmation I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin.
82 lines
2.5 KiB
Python
82 lines
2.5 KiB
Python
import asyncio
|
||
|
||
import cognee
|
||
from cognee.shared.logging_utils import setup_logging, ERROR
|
||
from cognee.modules.pipelines import Task, run_tasks
|
||
from cognee.tasks.temporal_awareness import build_graph_with_temporal_awareness
|
||
from cognee.infrastructure.databases.relational import (
|
||
create_db_and_tables as create_relational_db_and_tables,
|
||
)
|
||
from cognee.tasks.temporal_awareness.index_graphiti_objects import (
|
||
index_and_transform_graphiti_nodes_and_edges,
|
||
)
|
||
from cognee.modules.retrieval.utils.brute_force_triplet_search import brute_force_triplet_search
|
||
from cognee.modules.retrieval.graph_completion_retriever import GraphCompletionRetriever
|
||
from cognee.infrastructure.llm.LLMGateway import LLMGateway
|
||
from cognee.modules.users.methods import get_default_user
|
||
|
||
text_list = [
|
||
"Kamala Harris is the Attorney General of California. She was previously "
|
||
"the district attorney for San Francisco.",
|
||
"As AG, Harris was in office from January 3, 2011 – January 3, 2017",
|
||
]
|
||
|
||
|
||
async def main():
|
||
await cognee.prune.prune_data()
|
||
await cognee.prune.prune_system(metadata=True)
|
||
await create_relational_db_and_tables()
|
||
|
||
# Initialize default user
|
||
user = await get_default_user()
|
||
|
||
for text in text_list:
|
||
await cognee.add(text)
|
||
|
||
tasks = [
|
||
Task(build_graph_with_temporal_awareness, text_list=text_list),
|
||
]
|
||
|
||
pipeline = run_tasks(tasks, user=user)
|
||
|
||
async for result in pipeline:
|
||
print(result)
|
||
|
||
await index_and_transform_graphiti_nodes_and_edges()
|
||
|
||
query = "When was Kamala Harris in office?"
|
||
triplets = await brute_force_triplet_search(
|
||
query=query,
|
||
user=user,
|
||
top_k=3,
|
||
collections=["graphitinode_content", "graphitinode_name", "graphitinode_summary"],
|
||
)
|
||
|
||
retriever = GraphCompletionRetriever()
|
||
context = await retriever.resolve_edges_to_text(triplets)
|
||
|
||
args = {
|
||
"question": query,
|
||
"context": context,
|
||
}
|
||
|
||
user_prompt = LLMGateway.render_prompt("graph_context_for_question.txt", args)
|
||
system_prompt = LLMGateway.read_query_prompt("answer_simple_question_restricted.txt")
|
||
|
||
computed_answer = await LLMGateway.acreate_structured_output(
|
||
text_input=user_prompt,
|
||
system_prompt=system_prompt,
|
||
response_model=str,
|
||
)
|
||
|
||
print(computed_answer)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
logger = setup_logging(log_level=ERROR)
|
||
loop = asyncio.new_event_loop()
|
||
asyncio.set_event_loop(loop)
|
||
try:
|
||
loop.run_until_complete(main())
|
||
finally:
|
||
loop.run_until_complete(loop.shutdown_asyncgens())
|