<!-- .github/pull_request_template.md --> ## Description <!-- Provide a clear description of the changes in this PR --> ## DCO Affirmation I affirm that all code in every commit of this pull request conforms to the terms of the Topoteretes Developer Certificate of Origin. --------- Co-authored-by: vasilije <vas.markovic@gmail.com> Co-authored-by: Vasilije <8619304+Vasilije1990@users.noreply.github.com>
67 lines
2.2 KiB
Python
67 lines
2.2 KiB
Python
import os
|
|
import asyncio
|
|
import pathlib
|
|
from cognee import config, add, cognify, search, SearchType, prune, visualize_graph
|
|
|
|
|
|
async def main():
|
|
data_directory_path = str(
|
|
pathlib.Path(os.path.join(pathlib.Path(__file__).parent, ".data_storage")).resolve()
|
|
)
|
|
# Set up the data directory. Cognee will store files here.
|
|
config.data_root_directory(data_directory_path)
|
|
|
|
cognee_directory_path = str(
|
|
pathlib.Path(os.path.join(pathlib.Path(__file__).parent, ".cognee_system")).resolve()
|
|
)
|
|
# Set up the Cognee system directory. Cognee will store system files and databases here.
|
|
config.system_root_directory(cognee_directory_path)
|
|
|
|
# Prune data and system metadata before running, only if we want "fresh" state.
|
|
await prune.prune_data()
|
|
await prune.prune_system(metadata=True)
|
|
|
|
text = "The Python programming language is widely used in data analysis, web development, and machine learning."
|
|
|
|
# Add the text data to Cognee.
|
|
await add(text)
|
|
|
|
# Cognify the text data.
|
|
await cognify()
|
|
|
|
# Or use our simple graph preview
|
|
graph_file_path = str(
|
|
pathlib.Path(
|
|
os.path.join(pathlib.Path(__file__).parent, ".artifacts/graph_visualization.html")
|
|
).resolve()
|
|
)
|
|
await visualize_graph(graph_file_path)
|
|
|
|
# Completion query that uses graph data to form context.
|
|
graph_completion = await search(
|
|
query_text="What is python?", query_type=SearchType.GRAPH_COMPLETION
|
|
)
|
|
print("Graph completion result is:")
|
|
print(graph_completion)
|
|
|
|
# Completion query that uses document chunks to form context.
|
|
rag_completion = await search(
|
|
query_text="What is Python?", query_type=SearchType.RAG_COMPLETION
|
|
)
|
|
print("Completion result is:")
|
|
print(rag_completion)
|
|
|
|
# Query all summaries related to query.
|
|
summaries = await search(query_text="Python", query_type=SearchType.SUMMARIES)
|
|
print("Summary results are:")
|
|
for summary in summaries:
|
|
print(summary)
|
|
|
|
chunks = await search(query_text="Python", query_type=SearchType.CHUNKS)
|
|
print("Chunk results are:")
|
|
for chunk in chunks:
|
|
print(chunk)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main())
|