cognee/evals/eval_swe_bench.py
2025-01-09 14:52:02 +01:00

160 lines
4.9 KiB
Python

import argparse
import json
import subprocess
import sys
from pathlib import Path
from swebench.harness.utils import load_swebench_dataset
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
from cognee.api.v1.cognify.code_graph_pipeline import run_code_graph_pipeline
from cognee.api.v1.search import SearchType
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.llm.prompts import read_query_prompt
from cognee.modules.retrieval.brute_force_triplet_search import brute_force_triplet_search
from cognee.shared.utils import render_graph
from evals.eval_utils import download_github_repo, retrieved_edges_to_string
def check_install_package(package_name):
"""
Check if a pip package is installed and install it if not.
Returns True if package is/was installed successfully, False otherwise.
"""
try:
__import__(package_name)
return True
except ImportError:
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", package_name])
return True
except subprocess.CalledProcessError:
return False
async def generate_patch_with_cognee(instance, llm_client, search_type=SearchType.CHUNKS):
repo_path = download_github_repo(instance, "../RAW_GIT_REPOS")
async for result in run_code_graph_pipeline(repo_path, include_docs=True):
print(result)
print("Here we have the repo under the repo_path")
await render_graph(None, include_labels=True, include_nodes=True)
problem_statement = instance["problem_statement"]
instructions = read_query_prompt("patch_gen_kg_instructions.txt")
retrieved_edges = await brute_force_triplet_search(
problem_statement,
top_k=3,
collections=["code_summary_text"],
)
retrieved_edges_str = retrieved_edges_to_string(retrieved_edges)
prompt = "\n".join(
[
problem_statement,
"<patch>",
PATCH_EXAMPLE,
"</patch>",
"These are the retrieved edges:",
retrieved_edges_str,
]
)
llm_client = get_llm_client()
answer_prediction = await llm_client.acreate_structured_output(
text_input=prompt,
system_prompt=instructions,
response_model=str,
)
return answer_prediction
async def generate_patch_without_cognee(instance, llm_client):
instructions = read_query_prompt("patch_gen_instructions.txt")
answer_prediction = await llm_client.acreate_structured_output(
text_input=instance["text"],
system_prompt=instructions,
response_model=str,
)
return answer_prediction
async def get_preds(dataset, with_cognee=True):
llm_client = get_llm_client()
if with_cognee:
model_name = "with_cognee"
pred_func = generate_patch_with_cognee
else:
model_name = "without_cognee"
pred_func = generate_patch_without_cognee
futures = [(instance["instance_id"], pred_func(instance, llm_client)) for instance in dataset]
model_patches = await asyncio.gather(*[x[1] for x in futures])
preds = [
{
"instance_id": instance_id,
"model_patch": model_patch,
"model_name_or_path": model_name,
}
for (instance_id, _), model_patch in zip(futures, model_patches)
]
return preds
async def main():
parser = argparse.ArgumentParser(description="Run LLM predictions on SWE-bench dataset")
parser.add_argument("--cognee_off", action="store_true")
parser.add_argument("--max_workers", type=int, required=True)
args = parser.parse_args()
for dependency in ["transformers", "sentencepiece", "swebench"]:
check_install_package(dependency)
if args.cognee_off:
dataset_name = "princeton-nlp/SWE-bench_Lite_bm25_13K"
dataset = load_swebench_dataset(dataset_name, split="test")
predictions_path = "preds_nocognee.json"
if not Path(predictions_path).exists():
preds = await get_preds(dataset, with_cognee=False)
with open(predictions_path, "w") as file:
json.dump(preds, file)
else:
dataset_name = "princeton-nlp/SWE-bench_Lite"
swe_dataset = load_swebench_dataset(dataset_name, split="test")[:1]
predictions_path = "preds.json"
preds = await get_preds(swe_dataset, with_cognee=not args.cognee_off)
with open(predictions_path, "w") as file:
json.dump(preds, file)
subprocess.run(
[
"python",
"-m",
"swebench.harness.run_evaluation",
"--dataset_name",
dataset_name,
"--split",
"test",
"--predictions_path",
predictions_path,
"--max_workers",
str(args.max_workers),
"--run_id",
"test_run",
]
)
if __name__ == "__main__":
import asyncio
asyncio.run(main(), debug=True)